On the fixed points in an $\omega$-limit set
Mathematica Bohemica, Tome 117 (1992) no. 4, pp. 349-364.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $M$ and $K$ be closed subsets of [0,1] with $K$ a subset of the limit points of $M$. Necessary and sufficient conditions are found for the existence of a continuous function $f:[0,1]\rightarrow [0,1]$ such that $M$ is an $\omega$-limit set for $f$ and $K$ is the set of fixed points of $f$ in $M$.
DOI : 10.21136/MB.1992.126065
Classification : 26A18, 54C30, 54H25
Keywords: $\omega$-limit set; fixed points
@article{10_21136_MB_1992_126065,
     author = {Ceder, J. G.},
     title = {On the fixed points in an $\omega$-limit set},
     journal = {Mathematica Bohemica},
     pages = {349--364},
     publisher = {mathdoc},
     volume = {117},
     number = {4},
     year = {1992},
     doi = {10.21136/MB.1992.126065},
     mrnumber = {1197285},
     zbl = {0772.26005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126065/}
}
TY  - JOUR
AU  - Ceder, J. G.
TI  - On the fixed points in an $\omega$-limit set
JO  - Mathematica Bohemica
PY  - 1992
SP  - 349
EP  - 364
VL  - 117
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126065/
DO  - 10.21136/MB.1992.126065
LA  - en
ID  - 10_21136_MB_1992_126065
ER  - 
%0 Journal Article
%A Ceder, J. G.
%T On the fixed points in an $\omega$-limit set
%J Mathematica Bohemica
%D 1992
%P 349-364
%V 117
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126065/
%R 10.21136/MB.1992.126065
%G en
%F 10_21136_MB_1992_126065
Ceder, J. G. On the fixed points in an $\omega$-limit set. Mathematica Bohemica, Tome 117 (1992) no. 4, pp. 349-364. doi : 10.21136/MB.1992.126065. http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.126065/

Cité par Sources :