Note on graphs colouring
Mathematica Bohemica, Tome 117 (1992) no. 2, pp. 157-158.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we show that the maximal number of minimal colourings of a graph with $n$ vertices and the chromatic number $k$ is equal to $k^{n-k}$, and the single graph for which this bound is attained consists of a $k$-clique and $n-k$ isolated vertices.
DOI : 10.21136/MB.1992.125898
Classification : 05C15, 05C40
Keywords: clique; chromatic number; isolated vertices; graph theory; graph colouring
@article{10_21136_MB_1992_125898,
     author = {Marcu, D\u{a}nu\c{t}},
     title = {Note on graphs colouring},
     journal = {Mathematica Bohemica},
     pages = {157--158},
     publisher = {mathdoc},
     volume = {117},
     number = {2},
     year = {1992},
     doi = {10.21136/MB.1992.125898},
     mrnumber = {1165892},
     zbl = {0763.05040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.125898/}
}
TY  - JOUR
AU  - Marcu, Dănuţ
TI  - Note on graphs colouring
JO  - Mathematica Bohemica
PY  - 1992
SP  - 157
EP  - 158
VL  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.125898/
DO  - 10.21136/MB.1992.125898
LA  - en
ID  - 10_21136_MB_1992_125898
ER  - 
%0 Journal Article
%A Marcu, Dănuţ
%T Note on graphs colouring
%J Mathematica Bohemica
%D 1992
%P 157-158
%V 117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.125898/
%R 10.21136/MB.1992.125898
%G en
%F 10_21136_MB_1992_125898
Marcu, Dănuţ. Note on graphs colouring. Mathematica Bohemica, Tome 117 (1992) no. 2, pp. 157-158. doi : 10.21136/MB.1992.125898. http://geodesic.mathdoc.fr/articles/10.21136/MB.1992.125898/

Cité par Sources :