Nonabsolutely convergent series
Mathematica Bohemica, Tome 116 (1991) no. 3, pp. 248-267.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Assume that for any $t$ from an interval $[a,b]$ a real number $u(t)$ is given. Summarizing all these numbers $u(t)$ is no problem in case of an absolutely convergent series $\sum_{t\in[a,b]}u(t)$. The paper gives a rule how to summarize a series of this type which is not absolutely convergent, using a theory of generalized Perron (or Kurzweil) integral.
DOI : 10.21136/MB.1991.126175
Classification : 26A39, 26A42, 40A05
Keywords: nonabsolutely convergent series; generalized Perron integral
@article{10_21136_MB_1991_126175,
     author = {Fra\v{n}kov\'a, Dana},
     title = {Nonabsolutely convergent series},
     journal = {Mathematica Bohemica},
     pages = {248--267},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {1991},
     doi = {10.21136/MB.1991.126175},
     mrnumber = {1126447},
     zbl = {0742.40002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126175/}
}
TY  - JOUR
AU  - Fraňková, Dana
TI  - Nonabsolutely convergent series
JO  - Mathematica Bohemica
PY  - 1991
SP  - 248
EP  - 267
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126175/
DO  - 10.21136/MB.1991.126175
LA  - en
ID  - 10_21136_MB_1991_126175
ER  - 
%0 Journal Article
%A Fraňková, Dana
%T Nonabsolutely convergent series
%J Mathematica Bohemica
%D 1991
%P 248-267
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126175/
%R 10.21136/MB.1991.126175
%G en
%F 10_21136_MB_1991_126175
Fraňková, Dana. Nonabsolutely convergent series. Mathematica Bohemica, Tome 116 (1991) no. 3, pp. 248-267. doi : 10.21136/MB.1991.126175. http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126175/

Cité par Sources :