On distances between isomorphism classes of graphs
Mathematica Bohemica, Tome 116 (1991) no. 2, pp. 160-169.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In 1986, Chartrand, Saba and Zou [3] defined a measure of the distance between (the isomorphism classes of) two graphs based on 'edge rotations'. Here, that measure and two related measures are explored. Various bounds, exact values for classes of graphs and relationships are proved, and the three measures are shown to be intimately linked to 'slowly-changing' parameters.
DOI : 10.21136/MB.1991.126142
Classification : 05C05, 05C99
Keywords: graphs; distance; deformations
@article{10_21136_MB_1991_126142,
     author = {Benad\'e, Gerhard and Goddard, Wayne and McKee, Terry A. and Winter, Paul A.},
     title = {On distances between isomorphism classes of graphs},
     journal = {Mathematica Bohemica},
     pages = {160--169},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1991},
     doi = {10.21136/MB.1991.126142},
     mrnumber = {1112000},
     zbl = {0753.05067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126142/}
}
TY  - JOUR
AU  - Benadé, Gerhard
AU  - Goddard, Wayne
AU  - McKee, Terry A.
AU  - Winter, Paul A.
TI  - On distances between isomorphism classes of graphs
JO  - Mathematica Bohemica
PY  - 1991
SP  - 160
EP  - 169
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126142/
DO  - 10.21136/MB.1991.126142
LA  - en
ID  - 10_21136_MB_1991_126142
ER  - 
%0 Journal Article
%A Benadé, Gerhard
%A Goddard, Wayne
%A McKee, Terry A.
%A Winter, Paul A.
%T On distances between isomorphism classes of graphs
%J Mathematica Bohemica
%D 1991
%P 160-169
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126142/
%R 10.21136/MB.1991.126142
%G en
%F 10_21136_MB_1991_126142
Benadé, Gerhard; Goddard, Wayne; McKee, Terry A.; Winter, Paul A. On distances between isomorphism classes of graphs. Mathematica Bohemica, Tome 116 (1991) no. 2, pp. 160-169. doi : 10.21136/MB.1991.126142. http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126142/

Cité par Sources :