One configurational characterization of Ostrom nets
Mathematica Bohemica, Tome 116 (1991) no. 2, pp. 132-147.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Bz the quadrileteral condition in a given net there is meant the following implication: If $A_1, A_2, A_3,A-4$ are arbitrary points, no three of them lie on the same line, with coll $(A_iA_j)$ (collinearity) for any five from six couples $\{i,j\}$ then there follows the collinearity coll $(A_kA_l)$ for the remaining couple $\{k,l\}$. In the article there is proved the every net satisfying the preceding configuration condition is necessarity the Ostrom net (i.e., the net over a field). Conversely, every Ostrom net satisfies the above configuration condition.
DOI : 10.21136/MB.1991.126140
Classification : 51A20, 51A25
Keywords: net; Ostrom net; quadrilateral closure condition; skew field; quadrangular condition
@article{10_21136_MB_1991_126140,
     author = {Ba\v{s}tinec, Jarom{\'\i}r},
     title = {One configurational characterization of {Ostrom} nets},
     journal = {Mathematica Bohemica},
     pages = {132--147},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1991},
     doi = {10.21136/MB.1991.126140},
     mrnumber = {1111998},
     zbl = {0737.51002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126140/}
}
TY  - JOUR
AU  - Baštinec, Jaromír
TI  - One configurational characterization of Ostrom nets
JO  - Mathematica Bohemica
PY  - 1991
SP  - 132
EP  - 147
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126140/
DO  - 10.21136/MB.1991.126140
LA  - en
ID  - 10_21136_MB_1991_126140
ER  - 
%0 Journal Article
%A Baštinec, Jaromír
%T One configurational characterization of Ostrom nets
%J Mathematica Bohemica
%D 1991
%P 132-147
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126140/
%R 10.21136/MB.1991.126140
%G en
%F 10_21136_MB_1991_126140
Baštinec, Jaromír. One configurational characterization of Ostrom nets. Mathematica Bohemica, Tome 116 (1991) no. 2, pp. 132-147. doi : 10.21136/MB.1991.126140. http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126140/

Cité par Sources :