The Hopf bifurcation theorem for parabolic equations with infinite delay
Mathematica Bohemica, Tome 116 (1991) no. 2, pp. 181-190.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The existence of the Hopf bifurcation for parabolic functional equations with delay of maximum order in spatial derivatives is proved. An application to an integrodifferential equation with a singular kernel is given.
DOI : 10.21136/MB.1991.126136
Classification : 34K15, 34K30, 35B10, 35B32, 35R10, 45K05, 47N20
Keywords: Hopf bifurcation; parabolic functional equation; infinite delay; singular kernel
@article{10_21136_MB_1991_126136,
     author = {Petzeltov\'a, Hana},
     title = {The {Hopf} bifurcation theorem for parabolic equations with infinite delay},
     journal = {Mathematica Bohemica},
     pages = {181--190},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1991},
     doi = {10.21136/MB.1991.126136},
     mrnumber = {1112003},
     zbl = {0749.35007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126136/}
}
TY  - JOUR
AU  - Petzeltová, Hana
TI  - The Hopf bifurcation theorem for parabolic equations with infinite delay
JO  - Mathematica Bohemica
PY  - 1991
SP  - 181
EP  - 190
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126136/
DO  - 10.21136/MB.1991.126136
LA  - en
ID  - 10_21136_MB_1991_126136
ER  - 
%0 Journal Article
%A Petzeltová, Hana
%T The Hopf bifurcation theorem for parabolic equations with infinite delay
%J Mathematica Bohemica
%D 1991
%P 181-190
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126136/
%R 10.21136/MB.1991.126136
%G en
%F 10_21136_MB_1991_126136
Petzeltová, Hana. The Hopf bifurcation theorem for parabolic equations with infinite delay. Mathematica Bohemica, Tome 116 (1991) no. 2, pp. 181-190. doi : 10.21136/MB.1991.126136. http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126136/

Cité par Sources :