On a Hamiltonian cycle of the fourth power of a connected graph
Mathematica Bohemica, Tome 116 (1991) no. 4, pp. 385-390.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper the following theorem is proved: Let $G$ be a connected graph of order $p\geq 4$ and let $M$ be a matching in $G$. Then there exists a hamiltonian cycle $C$ of $G^4$ such that $E(C)\bigcap M=0$.
DOI : 10.21136/MB.1991.126033
Classification : 05C38, 05C45, 05C75
Keywords: Hamiltonian cycle; power of connected graph; matching; powers of graphs; matching in graphs
@article{10_21136_MB_1991_126033,
     author = {Wisztov\'a, Elena},
     title = {On a {Hamiltonian} cycle of the fourth power of a connected graph},
     journal = {Mathematica Bohemica},
     pages = {385--390},
     publisher = {mathdoc},
     volume = {116},
     number = {4},
     year = {1991},
     doi = {10.21136/MB.1991.126033},
     mrnumber = {1146396},
     zbl = {0752.05039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126033/}
}
TY  - JOUR
AU  - Wisztová, Elena
TI  - On a Hamiltonian cycle of the fourth power of a connected graph
JO  - Mathematica Bohemica
PY  - 1991
SP  - 385
EP  - 390
VL  - 116
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126033/
DO  - 10.21136/MB.1991.126033
LA  - en
ID  - 10_21136_MB_1991_126033
ER  - 
%0 Journal Article
%A Wisztová, Elena
%T On a Hamiltonian cycle of the fourth power of a connected graph
%J Mathematica Bohemica
%D 1991
%P 385-390
%V 116
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126033/
%R 10.21136/MB.1991.126033
%G en
%F 10_21136_MB_1991_126033
Wisztová, Elena. On a Hamiltonian cycle of the fourth power of a connected graph. Mathematica Bohemica, Tome 116 (1991) no. 4, pp. 385-390. doi : 10.21136/MB.1991.126033. http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126033/

Cité par Sources :