Invariance of the Fredholm radius of the Neumann operator
Časopis pro pěstování matematiky, Tome 115 (1990) no. 2, pp. 147-164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CPM.1990.108370
Classification : 35J05
@article{10_21136_CPM_1990_108370,
     author = {Medkov\'a, Dagmar},
     title = {Invariance of the {Fredholm} radius of the {Neumann} operator},
     journal = {\v{C}asopis pro p\v{e}stov\'an{\'\i} matematiky},
     pages = {147--164},
     year = {1990},
     volume = {115},
     number = {2},
     doi = {10.21136/CPM.1990.108370},
     mrnumber = {1054002},
     zbl = {0707.35049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CPM.1990.108370/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - Invariance of the Fredholm radius of the Neumann operator
JO  - Časopis pro pěstování matematiky
PY  - 1990
SP  - 147
EP  - 164
VL  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CPM.1990.108370/
DO  - 10.21136/CPM.1990.108370
LA  - en
ID  - 10_21136_CPM_1990_108370
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T Invariance of the Fredholm radius of the Neumann operator
%J Časopis pro pěstování matematiky
%D 1990
%P 147-164
%V 115
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CPM.1990.108370/
%R 10.21136/CPM.1990.108370
%G en
%F 10_21136_CPM_1990_108370
Medková, Dagmar. Invariance of the Fredholm radius of the Neumann operator. Časopis pro pěstování matematiky, Tome 115 (1990) no. 2, pp. 147-164. doi: 10.21136/CPM.1990.108370

[AKK1] T. S. Angell R. E. Kleinman J. Král: Double layer potentials on boundaries with corners and edges. Comment. Math. Univ. Carolinae 27 (1989). | MR

[AKK2] T. S. Angell R. E. Kleinman J. Král: Layer potentials on boundaries with corners and edges. Časopis pěst. mat. 113 (1988), 387-402. | MR

[DG1] E. De Giorgi: Su una teoria generále della misura (r - l)-dimensionale in uno spazi ad r dimensioni. Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191 - 213. | MR

[DG2] E. De Giorgi: Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazi ad r dimensioni. Ricerche Mat. 4 (1955), 95-113. | MR

[Do] M. Dont E. Dontová: Invariance of the Fredholm radius of an operator in potential theory. Časopis pěst. mat. 112 (1987), 269-283. | MR

[Fe1] H. Federer: A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958), 447-451. | MR | Zbl

[Fe2] H. Federer: Geometric measure theory. Springer-Verlag 1969. | MR | Zbl

[Fe3] H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44-76. | MR | Zbl

[K1] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin 1980. | MR

[K2] J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20 (95) (1970), 556-597. | MR

[K3] J. Král: Note on sets whose characteristic functions have signed measure for their partial derivatives. (Czech). Časopis pěst. mat. 86 (1961), 178-194. | MR

[K4] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. | MR

[K5] J. Král: The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15 (90) (1965), 565-588. | MR

[KW] J. Král W. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Aplikace Matematiky 31 (1986), 293 - 308. | MR

[O] M. Ohtsuka: Reading of De Giorgi's papers. Gakushuin University 1980.

Cité par Sources :