On a set in ${\mathbbm R}^n$ under coordinate transformations
Časopis pro pěstování matematiky, Tome 109 (1984) no. 3, pp. 225-235 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CPM.1984.108436
Classification : 26B10
@article{10_21136_CPM_1984_108436,
     author = {Miller, Harry I. and Pal, Mukul},
     title = {On a set in ${\mathbbm R}^n$ under coordinate transformations},
     journal = {\v{C}asopis pro p\v{e}stov\'an{\'\i} matematiky},
     pages = {225--235},
     year = {1984},
     volume = {109},
     number = {3},
     doi = {10.21136/CPM.1984.108436},
     mrnumber = {755586},
     zbl = {0561.26009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CPM.1984.108436/}
}
TY  - JOUR
AU  - Miller, Harry I.
AU  - Pal, Mukul
TI  - On a set in ${\mathbbm R}^n$ under coordinate transformations
JO  - Časopis pro pěstování matematiky
PY  - 1984
SP  - 225
EP  - 235
VL  - 109
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CPM.1984.108436/
DO  - 10.21136/CPM.1984.108436
LA  - en
ID  - 10_21136_CPM_1984_108436
ER  - 
%0 Journal Article
%A Miller, Harry I.
%A Pal, Mukul
%T On a set in ${\mathbbm R}^n$ under coordinate transformations
%J Časopis pro pěstování matematiky
%D 1984
%P 225-235
%V 109
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CPM.1984.108436/
%R 10.21136/CPM.1984.108436
%G en
%F 10_21136_CPM_1984_108436
Miller, Harry I.; Pal, Mukul. On a set in ${\mathbbm R}^n$ under coordinate transformations. Časopis pro pěstování matematiky, Tome 109 (1984) no. 3, pp. 225-235. doi: 10.21136/CPM.1984.108436

[1] T. Apostol: Mathematical Analysis, second edition. Addison-Wesley, Reading Massachusetts, 1974. | MR

[2] P. Billingsley: Ergodic Theory and Information. Wiley, New York, 1965. | MR | Zbl

[3] P. Billingsley: Measure and Probability. Wiley, New York, 1979. | MR

[4] J. P. Kahane: Some Random Series of Functions. Heath, Lexington Massachusetts, 1968. | MR | Zbl

[5] S. Kurepa: Note on the difference set of two measurable sets in ${\mathbb R}^n. Glasnik Mat. 15 (1960), 99-105. | MR

[6] S. Kurepa: On transformations of measurable sets in $E^n$. Glasnik Mat. 20 (1965), 235-242. | MR

[7] H. I. Miller: On a paper of Saha and Ray. Publ. Inst. Math. 27 (41) (1980), 175- 178. | MR | Zbl

[8] H. I. Miller: On transformations of sets in ${\mathbb R}^n$. Čas. pěst. mat. 106 (1981), 422-430. | MR

[9] T. Neubrunn T. Saldt: Distance sets, ration sets and certain transformations of set of real numbers. Čas. pěst. mat. 94 (1969), 381-393. | MR

[10] M. Pal: On certain transformations of sets in RN. Acta Facult. Rerum Nat. Univ. Comenianae Mathematica, XXIX (1974), 43-53. | MR

[11] S. Piccard: Sur les ensemble de distances des ensembles de points d'un espace Euclidean. Neuchatel, 1933.

[12] H. Steinhaus: Sur les distances des points des ensembles de measure positive. Fund. Math. 1 (1920), 93-104.

Cité par Sources :