@article{10_21136_CPM_1976_117920,
author = {Eagleson, G. K.},
title = {Martingale convergence to the {Poisson} distribution},
journal = {\v{C}asopis pro p\v{e}stov\'an{\'\i} matematiky},
pages = {271--277},
year = {1976},
volume = {101},
number = {3},
doi = {10.21136/CPM.1976.117920},
mrnumber = {0482947},
zbl = {0345.60027},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CPM.1976.117920/}
}
TY - JOUR AU - Eagleson, G. K. TI - Martingale convergence to the Poisson distribution JO - Časopis pro pěstování matematiky PY - 1976 SP - 271 EP - 277 VL - 101 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CPM.1976.117920/ DO - 10.21136/CPM.1976.117920 LA - en ID - 10_21136_CPM_1976_117920 ER -
Eagleson, G. K. Martingale convergence to the Poisson distribution. Časopis pro pěstování matematiky, Tome 101 (1976) no. 3, pp. 271-277. doi: 10.21136/CPM.1976.117920
[1] Aлдa B.: Зaмeчaниe к pacпpeдeлeнию Пyaccoнa. Czech. Math. J. 2 (77) 1952, 243 - 246.
[2] Brown B. M., Eagleson G. K.: Behaviour of moments of row sums of elementary systems. Ann. Math. Statist. 41 (1970), 1853-1860. | MR
[3] Brown B. M., Eagleson G. K.: Martingale convergence to infinitely divisibîe laws with finite variances. Trans. Amer. Math. Soc. I62 (1971), 449-453. | MR
[4] Freedman D.: The Poisson approximation for dependent events. Ann. Prob. 2 (1974), 256-269. | MR | Zbl
[5] Gnedenko B. V.: The Theory of Probability. 2nd ed. Chelsea, New York, (1962). | Zbl
[6] McLeish D. L.: Dependent central limit thðorems and invariance principles. Ann. Prob. 2(1974), 620-628. | MR
[7] Muxaйлoв B. Г.: Cxoдимocть к Пyaccoнoвcкoмy пpoцeccy в cxeмe нapacтaющиx cyмм зaвиcимыx cлyчaйныx вeличин. Teopия вepoят. и ee пpимeн. XIX (1974), 422-426.
[8] Pratt J. W.: On interchanging limits and integrals. Ann. Math. Statist. 31 (1960), 74-77. | MR | Zbl
[9] Paйкoв Д. A.: O cвязи мeждy цeнтpaльным пpeдeльным зaкoнoм тeopии вepoятнocтeй и зaкoнoм бoльшиx чиceл. Изв. A. H. CCCP, cepия мaт. (1938), 323-336.
[10] Ceвacmьянoв Б. A.: Пpeдeльный зaкoн Пyaccoнa в cxeмe cyмм зaвиcимыx cлyчaйныx вeличин. Teopия вepoят. и ee пpимeн. XVII (1972), 733- 738.
[11] Scott D. J.: Central limit theorems for martingales and for processes with stationary increments, using a Skorohod representation approach. Adv. Appl. Prob. 5 (1973), 119-137. | MR
Cité par Sources :