Linear preserver of $n\times 1$ Ferrers vectors
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1189-1200.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A=[a_{ij}]_{m\times n}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times 1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb {Z}_2$. Also, we have achieved the number of these linear maps in each case.
DOI : 10.21136/CMJ.2023.0440-22
Classification : 05B20, 15A04
Keywords: Ferrers matrix; linear preserver; Boolean semiring
@article{10_21136_CMJ_2023_0440_22,
     author = {Fazlpar, Leila and Armandnejad, Ali},
     title = {Linear preserver of $n\times 1$ {Ferrers} vectors},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1189--1200},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2023},
     doi = {10.21136/CMJ.2023.0440-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/}
}
TY  - JOUR
AU  - Fazlpar, Leila
AU  - Armandnejad, Ali
TI  - Linear preserver of $n\times 1$ Ferrers vectors
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1189
EP  - 1200
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/
DO  - 10.21136/CMJ.2023.0440-22
LA  - en
ID  - 10_21136_CMJ_2023_0440_22
ER  - 
%0 Journal Article
%A Fazlpar, Leila
%A Armandnejad, Ali
%T Linear preserver of $n\times 1$ Ferrers vectors
%J Czechoslovak Mathematical Journal
%D 2023
%P 1189-1200
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/
%R 10.21136/CMJ.2023.0440-22
%G en
%F 10_21136_CMJ_2023_0440_22
Fazlpar, Leila; Armandnejad, Ali. Linear preserver of $n\times 1$ Ferrers vectors. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1189-1200. doi : 10.21136/CMJ.2023.0440-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/

Cité par Sources :