Linear preserver of $n\times 1$ Ferrers vectors
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1189-1200
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $A=[a_{ij}]_{m\times n}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times 1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb {Z}_2$. Also, we have achieved the number of these linear maps in each case.
Let $A=[a_{ij}]_{m\times n}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times 1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb {Z}_2$. Also, we have achieved the number of these linear maps in each case.
DOI :
10.21136/CMJ.2023.0440-22
Classification :
05B20, 15A04
Keywords: Ferrers matrix; linear preserver; Boolean semiring
Keywords: Ferrers matrix; linear preserver; Boolean semiring
@article{10_21136_CMJ_2023_0440_22,
author = {Fazlpar, Leila and Armandnejad, Ali},
title = {Linear preserver of $n\times 1$ {Ferrers} vectors},
journal = {Czechoslovak Mathematical Journal},
pages = {1189--1200},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0440-22},
zbl = {07790568},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/}
}
TY - JOUR AU - Fazlpar, Leila AU - Armandnejad, Ali TI - Linear preserver of $n\times 1$ Ferrers vectors JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1189 EP - 1200 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/ DO - 10.21136/CMJ.2023.0440-22 LA - en ID - 10_21136_CMJ_2023_0440_22 ER -
%0 Journal Article %A Fazlpar, Leila %A Armandnejad, Ali %T Linear preserver of $n\times 1$ Ferrers vectors %J Czechoslovak Mathematical Journal %D 2023 %P 1189-1200 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/ %R 10.21136/CMJ.2023.0440-22 %G en %F 10_21136_CMJ_2023_0440_22
Fazlpar, Leila; Armandnejad, Ali. Linear preserver of $n\times 1$ Ferrers vectors. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1189-1200. doi: 10.21136/CMJ.2023.0440-22
Cité par Sources :