Keywords: Ferrers matrix; linear preserver; Boolean semiring
@article{10_21136_CMJ_2023_0440_22,
author = {Fazlpar, Leila and Armandnejad, Ali},
title = {Linear preserver of $n\times 1$ {Ferrers} vectors},
journal = {Czechoslovak Mathematical Journal},
pages = {1189--1200},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0440-22},
zbl = {07790568},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/}
}
TY - JOUR AU - Fazlpar, Leila AU - Armandnejad, Ali TI - Linear preserver of $n\times 1$ Ferrers vectors JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1189 EP - 1200 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/ DO - 10.21136/CMJ.2023.0440-22 LA - en ID - 10_21136_CMJ_2023_0440_22 ER -
%0 Journal Article %A Fazlpar, Leila %A Armandnejad, Ali %T Linear preserver of $n\times 1$ Ferrers vectors %J Czechoslovak Mathematical Journal %D 2023 %P 1189-1200 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0440-22/ %R 10.21136/CMJ.2023.0440-22 %G en %F 10_21136_CMJ_2023_0440_22
Fazlpar, Leila; Armandnejad, Ali. Linear preserver of $n\times 1$ Ferrers vectors. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1189-1200. doi: 10.21136/CMJ.2023.0440-22
[1] Beasley, L. B.: $(0,1)$-matrices, discrepancy and preservers. Czech. Math. J. 69 (2019), 1123-1131. | DOI | MR | JFM
[2] Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science 5. Springer, Berlin (1986). | DOI | MR | JFM
[3] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of row-dense matrices. Czech. Math. J. 66 (2016), 847-858. | DOI | MR | JFM
[4] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Strong linear preservers of dense matrices. Bull. Iran. Math. Soc. 44 (2018), 969-976. | DOI | MR | JFM
[5] Sirasuntorn, N., Sombatboriboon, S., Udomsub, N.: Inversion of matrices over Boolean semirings. Thai J. Math. 7 (2009), 105-113. | MR | JFM
Cité par Sources :