On distance Laplacian energy in terms of graph invariants
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 335-353
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a simple connected graph $G$ of order $n$ having distance Laplacian eigenvalues $ \rho ^{L}_{1}\geq \rho ^{L}_{2}\geq \cdots \geq \rho ^{L}_{n}$, the distance Laplacian energy ${\rm DLE} (G)$ is defined as ${\rm DLE} (G)=\sum _{i=1}^{n}|\rho ^{L}_i-{2W(G)}/{n}|$, where $W(G)$ is the Wiener index of $G$. We obtain a relationship between the Laplacian energy and the distance Laplacian energy for graphs with diameter 2. We obtain lower bounds for the distance Laplacian energy ${\rm DLE} (G)$ in terms of the order $n$, the Wiener index $W(G)$, the independence number, the vertex connectivity number and other given parameters. We characterize the extremal graphs attaining these bounds. We show that the complete bipartite graph has the minimum distance Laplacian energy among all connected bipartite graphs and the complete split graph has the minimum distance Laplacian energy among all connected graphs with a given independence number. Further, we obtain the distance Laplacian spectrum of the join of a graph with the union of two other graphs. We show that the graph $K_{k}\bigtriangledown (K_{t}\cup K_{n-k-t})$, $1\leq t \leq \lfloor \frac {n-k}{2}\rfloor $, has the minimum distance Laplacian energy among all connected graphs with vertex connectivity $k$. We conclude this paper with a discussion on the trace norm of a matrix and the importance of our results in the theory of the trace norm of the matrix $D^L(G)-(2W(G)/n)I_n$.
For a simple connected graph $G$ of order $n$ having distance Laplacian eigenvalues $ \rho ^{L}_{1}\geq \rho ^{L}_{2}\geq \cdots \geq \rho ^{L}_{n}$, the distance Laplacian energy ${\rm DLE} (G)$ is defined as ${\rm DLE} (G)=\sum _{i=1}^{n}|\rho ^{L}_i-{2W(G)}/{n}|$, where $W(G)$ is the Wiener index of $G$. We obtain a relationship between the Laplacian energy and the distance Laplacian energy for graphs with diameter 2. We obtain lower bounds for the distance Laplacian energy ${\rm DLE} (G)$ in terms of the order $n$, the Wiener index $W(G)$, the independence number, the vertex connectivity number and other given parameters. We characterize the extremal graphs attaining these bounds. We show that the complete bipartite graph has the minimum distance Laplacian energy among all connected bipartite graphs and the complete split graph has the minimum distance Laplacian energy among all connected graphs with a given independence number. Further, we obtain the distance Laplacian spectrum of the join of a graph with the union of two other graphs. We show that the graph $K_{k}\bigtriangledown (K_{t}\cup K_{n-k-t})$, $1\leq t \leq \lfloor \frac {n-k}{2}\rfloor $, has the minimum distance Laplacian energy among all connected graphs with vertex connectivity $k$. We conclude this paper with a discussion on the trace norm of a matrix and the importance of our results in the theory of the trace norm of the matrix $D^L(G)-(2W(G)/n)I_n$.
DOI : 10.21136/CMJ.2023.0421-20
Classification : 05C12, 05C50, 15A18
Keywords: distance matrix; energy; distance Laplacian matrix; distance Laplacian energy
@article{10_21136_CMJ_2023_0421_20,
     author = {Ganie, Hilal A. and Ul Shaban, Rezwan and Rather, Bilal A. and Pirzada, Shariefuddin},
     title = {On distance {Laplacian} energy in terms of graph invariants},
     journal = {Czechoslovak Mathematical Journal},
     pages = {335--353},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0421-20},
     mrnumber = {4586898},
     zbl = {07729511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0421-20/}
}
TY  - JOUR
AU  - Ganie, Hilal A.
AU  - Ul Shaban, Rezwan
AU  - Rather, Bilal A.
AU  - Pirzada, Shariefuddin
TI  - On distance Laplacian energy in terms of graph invariants
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 335
EP  - 353
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0421-20/
DO  - 10.21136/CMJ.2023.0421-20
LA  - en
ID  - 10_21136_CMJ_2023_0421_20
ER  - 
%0 Journal Article
%A Ganie, Hilal A.
%A Ul Shaban, Rezwan
%A Rather, Bilal A.
%A Pirzada, Shariefuddin
%T On distance Laplacian energy in terms of graph invariants
%J Czechoslovak Mathematical Journal
%D 2023
%P 335-353
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0421-20/
%R 10.21136/CMJ.2023.0421-20
%G en
%F 10_21136_CMJ_2023_0421_20
Ganie, Hilal A.; Ul Shaban, Rezwan; Rather, Bilal A.; Pirzada, Shariefuddin. On distance Laplacian energy in terms of graph invariants. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 335-353. doi: 10.21136/CMJ.2023.0421-20

[1] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439 (2013), 21-33. | DOI | MR | JFM

[2] Aouchiche, M., Hansen, P.: Distance spectra of graphs: A survey. Linear Algebra Appl. 458 (2014), 301-386. | DOI | MR | JFM

[3] Aouchiche, M., Hansen, P.: Some properties of the distance Laplacian eigenvalues of a graph. Czech. Math. J. 64 (2014), 751-761. | DOI | MR | JFM

[4] Brouwer, A. E., Haemers, W. H.: Spectra of graphs. Universitext. Berlin: Springer (2012). | DOI | MR | JFM

[5] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application. Pure and Applied Mathematics 87. Academic Press, New York (1980). | MR | JFM

[6] Das, K. C., Aouchiche, M., Hansen, P.: On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs. Discrete Appl. Math. 243 (2018), 172-185. | DOI | MR | JFM

[7] Díaz, R. C., Rojo, O.: Sharp upper bounds on the distance energies of a graph. Linear Algebra Appl. 545 (2018), 55-75. | DOI | MR | JFM

[8] Ganie, H. A.: On distance Laplacian spectrum (energy) of graphs. Discrete Math. Algorithms Appl. 12 (2020), Article ID 2050061, 16 pages. | DOI | MR | JFM

[9] Ganie, H. A.: On the distance Laplacian energy ordering of tree. Appl. Math. Comput. 394 (2021), Article ID 125762, 10 pages. | DOI | MR | JFM

[10] Ganie, H. A., Chat, B. A., Pirzada, S.: Signless Laplacian energy of a graph and energy of line graph. Linear Algebra Appl. 544 (2018), 306-324. | DOI | MR | JFM

[11] Ganie, H. A., Pirzada, S., Rather, B. A., Trevisan, V.: Further developments on Brouwer's conjecture for the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 588 (2020), 1-18. | DOI | MR | JFM

[12] Gutman, I., Zhou, B.: Laplacian energy of a graph. Linear Algebra Appl. 414 (2006), 29-37. | DOI | MR | JFM

[13] Indulal, G., Gutman, I., Vijayakumar, A.: On distance energy of graphs. MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472. | MR | JFM

[14] Li, X., Shi, Y., Gutman, I.: Graph Energy. Springer, New York (2012). | DOI | MR | JFM

[15] Monsalve, J., Rada, J.: Oriented bipartite graphs with minimal trace norm. Linear Multilinear Algebra 67 (2019), 1121-1131. | DOI | MR | JFM

[16] Pirzada, S.: An Introduction to Graph Theory. Orient Blackswan, Hyderabad (2012).

[17] Pirzada, S., Ganie, H. A.: On the Laplacian eigenvalues of a graph and Laplacian energy. Linear Algebra Appl. 486 (2015), 454-468. | DOI | MR | JFM

[18] Yang, J., You, L., Gutman, I.: Bounds on the distance Laplacian energy of graphs. Kragujevac J. Math. 37 (2013), 245-255. | MR | JFM

Cité par Sources :