The tangent function and power residues modulo primes
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 971-978.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p$ be an odd prime, and let $a$ be an integer not divisible by $p$. When $m$ is a positive integer with $p\equiv 1\pmod {2m}$ and $2$ is an $m$th power residue modulo $p$, we determine the value of the product $\prod _{k\in R_m(p)}(1+\tan (\pi ak/p))$, where $$ R_m(p)=\{0\colon k\in \mathbb Z\ \text {is an}\ m\text {th power residue modulo}\ p\}. $$ In particular, if $p=x^2+64y^2$ with $x,y\in \mathbb Z$, then $$ \prod _{k\in R_4(p)} \Big (1+\tan \pi \frac {ak}p\Big )=(-1)^{y}(-2)^{(p-1)/8}. $$
DOI : 10.21136/CMJ.2023.0395-22
Classification : 05A19, 11A15, 33B10
Keywords: power residues modulo prime; the tangent function; identity
@article{10_21136_CMJ_2023_0395_22,
     author = {Sun, Zhi-Wei},
     title = {The tangent function and power residues modulo primes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {971--978},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2023},
     doi = {10.21136/CMJ.2023.0395-22},
     mrnumber = {4632869},
     zbl = {07729549},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0395-22/}
}
TY  - JOUR
AU  - Sun, Zhi-Wei
TI  - The tangent function and power residues modulo primes
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 971
EP  - 978
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0395-22/
DO  - 10.21136/CMJ.2023.0395-22
LA  - en
ID  - 10_21136_CMJ_2023_0395_22
ER  - 
%0 Journal Article
%A Sun, Zhi-Wei
%T The tangent function and power residues modulo primes
%J Czechoslovak Mathematical Journal
%D 2023
%P 971-978
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0395-22/
%R 10.21136/CMJ.2023.0395-22
%G en
%F 10_21136_CMJ_2023_0395_22
Sun, Zhi-Wei. The tangent function and power residues modulo primes. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 971-978. doi : 10.21136/CMJ.2023.0395-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0395-22/

Cité par Sources :