The tangent function and power residues modulo primes
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 971-978
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $p$ be an odd prime, and let $a$ be an integer not divisible by $p$. When $m$ is a positive integer with $p\equiv 1\pmod {2m}$ and $2$ is an $m$th power residue modulo $p$, we determine the value of the product $\prod _{k\in R_m(p)}(1+\tan (\pi ak/p))$, where $$ R_m(p)=\{0\colon k\in \mathbb Z\ \text {is an}\ m\text {th power residue modulo}\ p\}. $$ In particular, if $p=x^2+64y^2$ with $x,y\in \mathbb Z$, then $$ \prod _{k\in R_4(p)} \Big (1+\tan \pi \frac {ak}p\Big )=(-1)^{y}(-2)^{(p-1)/8}. $$
DOI :
10.21136/CMJ.2023.0395-22
Classification :
05A19, 11A15, 33B10
Keywords: power residues modulo prime; the tangent function; identity
Keywords: power residues modulo prime; the tangent function; identity
@article{10_21136_CMJ_2023_0395_22,
author = {Sun, Zhi-Wei},
title = {The tangent function and power residues modulo primes},
journal = {Czechoslovak Mathematical Journal},
pages = {971--978},
publisher = {mathdoc},
volume = {73},
number = {3},
year = {2023},
doi = {10.21136/CMJ.2023.0395-22},
mrnumber = {4632869},
zbl = {07729549},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0395-22/}
}
TY - JOUR AU - Sun, Zhi-Wei TI - The tangent function and power residues modulo primes JO - Czechoslovak Mathematical Journal PY - 2023 SP - 971 EP - 978 VL - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0395-22/ DO - 10.21136/CMJ.2023.0395-22 LA - en ID - 10_21136_CMJ_2023_0395_22 ER -
Sun, Zhi-Wei. The tangent function and power residues modulo primes. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 971-978. doi: 10.21136/CMJ.2023.0395-22
Cité par Sources :