Keywords: power residues modulo prime; the tangent function; identity
@article{10_21136_CMJ_2023_0395_22,
author = {Sun, Zhi-Wei},
title = {The tangent function and power residues modulo primes},
journal = {Czechoslovak Mathematical Journal},
pages = {971--978},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0395-22},
mrnumber = {4632869},
zbl = {07729549},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0395-22/}
}
TY - JOUR AU - Sun, Zhi-Wei TI - The tangent function and power residues modulo primes JO - Czechoslovak Mathematical Journal PY - 2023 SP - 971 EP - 978 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0395-22/ DO - 10.21136/CMJ.2023.0395-22 LA - en ID - 10_21136_CMJ_2023_0395_22 ER -
Sun, Zhi-Wei. The tangent function and power residues modulo primes. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 971-978. doi: 10.21136/CMJ.2023.0395-22
[1] Berndt, B. C., Evans, R. J., Williams, K. S.: Gauss and Jacobi Sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1998). | MR | JFM
[2] Cox, D. A.: Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts. John Wiley & Sons, New York (1989). | DOI | MR | JFM
[3] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84. Springer, New York (1990). | DOI | MR | JFM
[4] Sun, Z.-W.: Trigonometric identities and quadratic residues. Publ. Math. Debr. 102 (2023), 111-138. | DOI | MR | JFM
Cité par Sources :