Keywords: large time asymptotic; regularisation of conservation law; Riesz-Feller \hbox {operator}
@article{10_21136_CMJ_2023_0235_22,
author = {Cuesta, Carlota Maria and Diez-Izagirre, Xuban},
title = {Large time behaviour of a conservation law regularised by a {Riesz-Feller} operator: the sub-critical case},
journal = {Czechoslovak Mathematical Journal},
pages = {1057--1080},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0235-22},
zbl = {07790561},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0235-22/}
}
TY - JOUR AU - Cuesta, Carlota Maria AU - Diez-Izagirre, Xuban TI - Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1057 EP - 1080 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0235-22/ DO - 10.21136/CMJ.2023.0235-22 LA - en ID - 10_21136_CMJ_2023_0235_22 ER -
%0 Journal Article %A Cuesta, Carlota Maria %A Diez-Izagirre, Xuban %T Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case %J Czechoslovak Mathematical Journal %D 2023 %P 1057-1080 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0235-22/ %R 10.21136/CMJ.2023.0235-22 %G en %F 10_21136_CMJ_2023_0235_22
Cuesta, Carlota Maria; Diez-Izagirre, Xuban. Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1057-1080. doi: 10.21136/CMJ.2023.0235-22
[1] Achleitner, F., Hittmeir, S., Schmeiser, C.: On nonlinear conservation laws with a nonlocal diffusion term. J. Differ. Equations 250 (2011), 2177-2196. | DOI | MR | JFM
[2] Achleitner, F., Kuehn, C.: Traveling waves for a bistable equation with nonlocal diffusion. Adv. Differ. Equ. 20 (2015), 887-936. | DOI | MR | JFM
[3] Achleitner, F., Ueda, Y.: Asymptotic stability of traveling wave solutions for nonlocal viscous conservation laws with explicit decay rates. J. Evol. Equ. 18 (2018), 923-946. | DOI | MR | JFM
[4] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics 65. Academic Press, New York (1975). | MR | JFM
[5] Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge University Press, Cambridge (1996). | MR | JFM
[6] Biler, P., Karch, G., Woyczyński, W. A.: Asymptotics for conservation laws involving Lévy diffusion generators. Stud. Math. 148 (2001), 171-192. | DOI | MR | JFM
[7] Biler, P., Karch, G., Woyczyński, W. A.: Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws. Ann. Inst. H. Poincaré, Anal. Non Linéaire 18 (2001), 613-637. | DOI | MR | JFM
[8] Bouharguane, A., Carles, R.: Splitting methods for the nonlocal Fowler equation. Math. Comput. 83 (2014), 1121-1141. | DOI | MR | JFM
[9] Cazacu, C. M., Ignat, L. I., Pazoto, A. F.: On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion. Nonlinearity 30 (2017), 3126-3150. | DOI | MR | JFM
[10] Christ, F. M., Weinstein, M. I.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100 (1991), 87-109. | DOI | MR | JFM
[11] Cifani, S., Jakobsen, E. R.: Entropy solution theory for fractional degenerate convection-diffusion equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 413-441. | DOI | MR | JFM
[12] Cuesta, C. M., Achleitner, F.: Addendum to: "Travelling waves for a non-local Korteweg de Vries-Burgers equation". J. Differ. Equations 262 (2017), 1155-1160. | DOI | MR | JFM
[13] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15. AMS, Providence (1977). | DOI | MR | JFM
[14] Diez-Izagirre, X.: Non-Local Regularisations of Scalar Conservation Laws: Doctoral Thesis. University of the Basque Country, Azpeitia (2021), Spanish.
[15] Diez-Izagirre, X., Cuesta, C. M.: Vanishing viscosity limit of a conservation law regularised by a Riesz-Feller operator. Monatsh. Math. 192 (2020), 513-550. | DOI | MR | JFM
[16] Droniou, J., Imbert, C.: Fractal first-order partial differential equations. Arch. Ration. Mech. Anal. 182 (2006), 299-331. | DOI | MR | JFM
[17] Escobedo, M., Vázquez, J. L., Zuazua, E.: A diffusion-convection equation in several space dimensions. Indiana Univ. Math. J. 42 (1993), 1413-1440. | DOI | MR | JFM
[18] Escobedo, M., Vázquez, J. L., Zuazua, E.: Asymptotic behaviour and source-type solutions for a diffusion-convection equation. Arch. Ration. Mech. Anal. 124 (1993), 43-65. | DOI | MR | JFM
[19] Escobedo, M., Zuazua, E.: Large time behavior for convection-diffusion equations in $\Bbb R^N$. J. Funct. Anal. 100 (1991), 119-161. | DOI | MR | JFM
[20] Fowler, A. C.: Evolution equations for dunes and drumlins. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), 377-387. | MR | JFM
[21] Gatto, A. E.: Product rule and chain rule estimates for fractional derivatives on spaces that satisfy the doubling condition. J. Funct. Anal. 188 (2002), 27-37. | DOI | MR | JFM
[22] Ignat, L. I., Stan, D.: Asymptotic behavior of solutions to fractional diffusion-convection equations. J. Lond. Math. Soc., II. Ser. 97 (2018), 258-281. | DOI | MR | JFM
[23] Kamin, S., Vázquez, J. L.: Fundamental solutions and asymptotic behaviour for the $p$-Laplacian equation. Rev. Mat. Iberoam. 4 (1988), 339-354. | DOI | MR | JFM
[24] Kluwick, A., Cox, E. A., Exner, A., Grinschgl, C.: On the internal structure of weakly nonlinear bores in laminar high Reynolds number flow. Acta Mech. 210 (2010), 135-157. | DOI | JFM
[25] Kružkov, S. N.: First order quasilinear equations in several independent variables. Math. USSR, Sb. 10 (1970), 217-243. | DOI | MR | JFM
[26] Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20 (2017), 7-51. | DOI | MR | JFM
[27] Liu, T.-P., Pierre, M.: Source-solutions and asymptotic behavior in conservation laws. J. Differ. Equations 51 (1984), 419-441. | DOI | MR | JFM
[28] Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153-192. | MR | JFM
[29] Marchaud, A.: Sur les dérivées et sur les différences des fonctions de variables réelles. J. Math. Pures Appl. (9) 6 (1927), 337-425 French \99999JFM99999 53.0232.02. | MR
[30] Pruitt, W. E., Taylor, S. J.: The potential kernel and hitting probabilities for the general stable process in $R^N$. Trans. Am. Math. Soc. 146 (1969), 299-321. | DOI | MR | JFM
[31] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). | MR | JFM
[32] Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge University Press, Cambridge (1999). | MR | JFM
[33] Simon, J.: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. | DOI | MR | JFM
[34] Sugimoto, N., Kakutani, T.: "Generalized Burgers' equation" for nonlinear viscoelastic waves. Wave Motion 7 (1985), 447-458. | DOI | MR | JFM
[35] Viertl, N.: Viscous Regularisation of Weak Laminar Hydraulic Jumps and Bores in Two Layer Shallow Water Flow: Ph.D. Thesis. Technische Universität Wien, Wien (2005).
[36] Visan, M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138 (2007), 281-374. | DOI | MR | JFM
[37] Weyl, H.: Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljschr. Naturforsch. Ges. Zürich 62 (1917), 296-302 German \99999JFM99999 46.0437.01. | MR
Cité par Sources :