Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1057-1080
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\alpha $, with $\alpha \in (0,1)$, which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function $|u|^{q-1}u/q$ for $q>1$. We show that in the sub-critical case, $1
We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\alpha $, with $\alpha \in (0,1)$, which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function $|u|^{q-1}u/q$ for $q>1$. We show that in the sub-critical case, $1$, the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local case (where the regularisation is the Laplacian) and, more closely, the ones for the regularisation given by the fractional Laplacian with order larger than one, see L. I. Ignat and D. Stan (2018). The main difference is that our operator is not symmetric and its Fourier symbol is not real. We can also adapt the proof and obtain similar results for general Riesz-Feller operators.
DOI : 10.21136/CMJ.2023.0235-22
Classification : 26A33, 35B40, 47J35
Keywords: large time asymptotic; regularisation of conservation law; Riesz-Feller \hbox {operator}
@article{10_21136_CMJ_2023_0235_22,
     author = {Cuesta, Carlota Maria and Diez-Izagirre, Xuban},
     title = {Large time behaviour of a conservation law regularised by a {Riesz-Feller} operator: the sub-critical case},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1057--1080},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0235-22},
     zbl = {07790561},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0235-22/}
}
TY  - JOUR
AU  - Cuesta, Carlota Maria
AU  - Diez-Izagirre, Xuban
TI  - Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1057
EP  - 1080
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0235-22/
DO  - 10.21136/CMJ.2023.0235-22
LA  - en
ID  - 10_21136_CMJ_2023_0235_22
ER  - 
%0 Journal Article
%A Cuesta, Carlota Maria
%A Diez-Izagirre, Xuban
%T Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case
%J Czechoslovak Mathematical Journal
%D 2023
%P 1057-1080
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0235-22/
%R 10.21136/CMJ.2023.0235-22
%G en
%F 10_21136_CMJ_2023_0235_22
Cuesta, Carlota Maria; Diez-Izagirre, Xuban. Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1057-1080. doi: 10.21136/CMJ.2023.0235-22

[1] Achleitner, F., Hittmeir, S., Schmeiser, C.: On nonlinear conservation laws with a nonlocal diffusion term. J. Differ. Equations 250 (2011), 2177-2196. | DOI | MR | JFM

[2] Achleitner, F., Kuehn, C.: Traveling waves for a bistable equation with nonlocal diffusion. Adv. Differ. Equ. 20 (2015), 887-936. | DOI | MR | JFM

[3] Achleitner, F., Ueda, Y.: Asymptotic stability of traveling wave solutions for nonlocal viscous conservation laws with explicit decay rates. J. Evol. Equ. 18 (2018), 923-946. | DOI | MR | JFM

[4] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics 65. Academic Press, New York (1975). | MR | JFM

[5] Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge University Press, Cambridge (1996). | MR | JFM

[6] Biler, P., Karch, G., Woyczyński, W. A.: Asymptotics for conservation laws involving Lévy diffusion generators. Stud. Math. 148 (2001), 171-192. | DOI | MR | JFM

[7] Biler, P., Karch, G., Woyczyński, W. A.: Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws. Ann. Inst. H. Poincaré, Anal. Non Linéaire 18 (2001), 613-637. | DOI | MR | JFM

[8] Bouharguane, A., Carles, R.: Splitting methods for the nonlocal Fowler equation. Math. Comput. 83 (2014), 1121-1141. | DOI | MR | JFM

[9] Cazacu, C. M., Ignat, L. I., Pazoto, A. F.: On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion. Nonlinearity 30 (2017), 3126-3150. | DOI | MR | JFM

[10] Christ, F. M., Weinstein, M. I.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100 (1991), 87-109. | DOI | MR | JFM

[11] Cifani, S., Jakobsen, E. R.: Entropy solution theory for fractional degenerate convection-diffusion equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 413-441. | DOI | MR | JFM

[12] Cuesta, C. M., Achleitner, F.: Addendum to: "Travelling waves for a non-local Korteweg de Vries-Burgers equation". J. Differ. Equations 262 (2017), 1155-1160. | DOI | MR | JFM

[13] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15. AMS, Providence (1977). | DOI | MR | JFM

[14] Diez-Izagirre, X.: Non-Local Regularisations of Scalar Conservation Laws: Doctoral Thesis. University of the Basque Country, Azpeitia (2021), Spanish.

[15] Diez-Izagirre, X., Cuesta, C. M.: Vanishing viscosity limit of a conservation law regularised by a Riesz-Feller operator. Monatsh. Math. 192 (2020), 513-550. | DOI | MR | JFM

[16] Droniou, J., Imbert, C.: Fractal first-order partial differential equations. Arch. Ration. Mech. Anal. 182 (2006), 299-331. | DOI | MR | JFM

[17] Escobedo, M., Vázquez, J. L., Zuazua, E.: A diffusion-convection equation in several space dimensions. Indiana Univ. Math. J. 42 (1993), 1413-1440. | DOI | MR | JFM

[18] Escobedo, M., Vázquez, J. L., Zuazua, E.: Asymptotic behaviour and source-type solutions for a diffusion-convection equation. Arch. Ration. Mech. Anal. 124 (1993), 43-65. | DOI | MR | JFM

[19] Escobedo, M., Zuazua, E.: Large time behavior for convection-diffusion equations in $\Bbb R^N$. J. Funct. Anal. 100 (1991), 119-161. | DOI | MR | JFM

[20] Fowler, A. C.: Evolution equations for dunes and drumlins. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), 377-387. | MR | JFM

[21] Gatto, A. E.: Product rule and chain rule estimates for fractional derivatives on spaces that satisfy the doubling condition. J. Funct. Anal. 188 (2002), 27-37. | DOI | MR | JFM

[22] Ignat, L. I., Stan, D.: Asymptotic behavior of solutions to fractional diffusion-convection equations. J. Lond. Math. Soc., II. Ser. 97 (2018), 258-281. | DOI | MR | JFM

[23] Kamin, S., Vázquez, J. L.: Fundamental solutions and asymptotic behaviour for the $p$-Laplacian equation. Rev. Mat. Iberoam. 4 (1988), 339-354. | DOI | MR | JFM

[24] Kluwick, A., Cox, E. A., Exner, A., Grinschgl, C.: On the internal structure of weakly nonlinear bores in laminar high Reynolds number flow. Acta Mech. 210 (2010), 135-157. | DOI | JFM

[25] Kružkov, S. N.: First order quasilinear equations in several independent variables. Math. USSR, Sb. 10 (1970), 217-243. | DOI | MR | JFM

[26] Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20 (2017), 7-51. | DOI | MR | JFM

[27] Liu, T.-P., Pierre, M.: Source-solutions and asymptotic behavior in conservation laws. J. Differ. Equations 51 (1984), 419-441. | DOI | MR | JFM

[28] Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153-192. | MR | JFM

[29] Marchaud, A.: Sur les dérivées et sur les différences des fonctions de variables réelles. J. Math. Pures Appl. (9) 6 (1927), 337-425 French \99999JFM99999 53.0232.02. | MR

[30] Pruitt, W. E., Taylor, S. J.: The potential kernel and hitting probabilities for the general stable process in $R^N$. Trans. Am. Math. Soc. 146 (1969), 299-321. | DOI | MR | JFM

[31] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). | MR | JFM

[32] Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge University Press, Cambridge (1999). | MR | JFM

[33] Simon, J.: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. | DOI | MR | JFM

[34] Sugimoto, N., Kakutani, T.: "Generalized Burgers' equation" for nonlinear viscoelastic waves. Wave Motion 7 (1985), 447-458. | DOI | MR | JFM

[35] Viertl, N.: Viscous Regularisation of Weak Laminar Hydraulic Jumps and Bores in Two Layer Shallow Water Flow: Ph.D. Thesis. Technische Universität Wien, Wien (2005).

[36] Visan, M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138 (2007), 281-374. | DOI | MR | JFM

[37] Weyl, H.: Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljschr. Naturforsch. Ges. Zürich 62 (1917), 296-302 German \99999JFM99999 46.0437.01. | MR

Cité par Sources :