Remarks on the balanced metric on Hartogs triangles with integral exponent
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 633-647
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb {Z}^{+}$, i.e., $$ \Omega _n(\gamma )= \{z=(z_1,\dots ,z_n)\in \mathbb {C}^n\colon |z_1|^{1/\gamma }|z_2|\dots |z_n|1 \} $$ equipped with a natural Kähler form $\omega _{g(\mu )} := \frac 12(i /\pi )\partial \overline {\partial }\Phi _n$ with $$ \Phi _n(z)=-\mu _1{\ln (|z_2|^{2\gamma }- |z_1 |^2)}-\sum _{i=2}^{n-1} {\mu _i{\ln (|z_{i+1}|^2-|z_i|^2)}}-\mu _n{\ln (1-{|z_n|^2})}, $$ where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\geq 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.
In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb {Z}^{+}$, i.e., $$ \Omega _n(\gamma )= \{z=(z_1,\dots ,z_n)\in \mathbb {C}^n\colon |z_1|^{1/\gamma }|z_2|\dots |z_n|1 \} $$ equipped with a natural Kähler form $\omega _{g(\mu )} := \frac 12(i /\pi )\partial \overline {\partial }\Phi _n$ with $$ \Phi _n(z)=-\mu _1{\ln (|z_2|^{2\gamma }- |z_1 |^2)}-\sum _{i=2}^{n-1} {\mu _i{\ln (|z_{i+1}|^2-|z_i|^2)}}-\mu _n{\ln (1-{|z_n|^2})}, $$ where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\geq 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.
DOI : 10.21136/CMJ.2023.0208-22
Classification : 32A25, 32Q15, 53C55
Keywords: balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization
@article{10_21136_CMJ_2023_0208_22,
     author = {Zhang, Qiannan and Yang, Huan},
     title = {Remarks on the balanced metric on {Hartogs} triangles with integral exponent},
     journal = {Czechoslovak Mathematical Journal},
     pages = {633--647},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0208-22},
     mrnumber = {4586916},
     zbl = {07729529},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/}
}
TY  - JOUR
AU  - Zhang, Qiannan
AU  - Yang, Huan
TI  - Remarks on the balanced metric on Hartogs triangles with integral exponent
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 633
EP  - 647
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/
DO  - 10.21136/CMJ.2023.0208-22
LA  - en
ID  - 10_21136_CMJ_2023_0208_22
ER  - 
%0 Journal Article
%A Zhang, Qiannan
%A Yang, Huan
%T Remarks on the balanced metric on Hartogs triangles with integral exponent
%J Czechoslovak Mathematical Journal
%D 2023
%P 633-647
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/
%R 10.21136/CMJ.2023.0208-22
%G en
%F 10_21136_CMJ_2023_0208_22
Zhang, Qiannan; Yang, Huan. Remarks on the balanced metric on Hartogs triangles with integral exponent. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 633-647. doi: 10.21136/CMJ.2023.0208-22

[1] Arezzo, C., Loi, A.: Moment maps, scalar curvature and quantization of Kähler manifolds. Commun. Math. Phys. 246 (2004), 543-559. | DOI | MR | JFM

[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. | DOI | MR | JFM

[3] Bi, E., Hou, Z.: Canonical metrics on generalized Hartogs triangles. C. R., Math., Acad. Sci. Paris 360 (2022), 305-313. | DOI | MR | JFM

[4] Bi, E., Su, G.: Balanced metrics and Berezin quantization on Hartogs triangles. Ann. Mat. Pura Appl. (4) 200 (2021), 273-285. | DOI | MR | JFM

[5] Bommier-Hato, H., Engliš, M., Youssfi, E.-H.: Radial balanced metrics on the unit ball of the Kepler manifold. J. Math. Anal. Appl. 475 (2019), 736-754. | DOI | MR | JFM

[6] Catlin, D.: The Bergman kernel and a theorem of Tian. Analysis and Geometry in Several Complex Variables Trends in Mathematics. Birkhäuser, Boston (1999), 1-23. | DOI | MR | JFM

[7] Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equation. Commun. Pure Appl. Math. 33 (1980), 507-544. | DOI | MR | JFM

[8] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. | DOI | MR | JFM

[9] Donaldson, S. K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59 (2001), 479-522. | DOI | MR | JFM

[10] Engliš, M.: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348 (1996), 411-479. | DOI | MR | JFM

[11] Engliš, M.: The asymptotics of a Laplace integral on a Kähler manifold. J. Reine Angew. Math. 528 (2000), 1-39. | DOI | MR | JFM

[12] Engliš, M.: Weighted Bergman kernels and balanced metrics. RIMS Kokyuroku 1487 (2006), 40-54. | MR

[13] Feng, Z., Tu, Z.: Balanced metrics on some Hartogs type domains over bounded symmetric domains. Ann. Global Anal. Geom. 47 (2015), 305-333. | DOI | MR | JFM

[14] Hou, Z., Bi, E.: Remarks on regular quantization and holomorphic isometric immersions on Hartogs triangles. Arch. Math. 118 (2022), 605-614. | DOI | MR | JFM

[15] Loi, A., Zedda, M.: Balanced metrics on Hartogs domains. Abh. Math. Semin. Univ. Hamb. 81 (2011), 69-77. | DOI | MR | JFM

[16] Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z. 270 (2012), 1077-1087. | DOI | MR | JFM

[17] Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217 (2008), 1756-1815. | DOI | MR | JFM

[18] Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662 (2012), 1-56. | DOI | MR | JFM

[19] Yang, H., Bi, E.: Remarks on Rawnsley's $\epsilon$-function on the Fock-Bargmann-Hartogs domains. Arch. Math. 112 (2019), 417-427. | DOI | MR | JFM

[20] Zedda, M.: Canonical metrics on Cartan-Hartogs domains. Int. J. Geom. Methods Mod. Phys. 9 (2012), Article ID 1250011, 13 pages. | DOI | MR | JFM

[21] Zedda, M.: Berezin-Engliš' quantization of Cartan-Hartogs domains. J. Geom. Phys. 100 (2016), 62-67. | DOI | MR | JFM

[22] Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 1998 (1998), 317-331. | DOI | MR | JFM

Cité par Sources :