Remarks on the balanced metric on Hartogs triangles with integral exponent
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 633-647.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb {Z}^{+}$, i.e., $$ \Omega _n(\gamma )= \{z=(z_1,\dots ,z_n)\in \mathbb {C}^n\colon |z_1|^{1/\gamma }|z_2|\dots |z_n|1 \} $$ equipped with a natural Kähler form $\omega _{g(\mu )} := \frac 12(i /\pi )\partial \overline {\partial }\Phi _n$ with $$ \Phi _n(z)=-\mu _1{\ln (|z_2|^{2\gamma }- |z_1 |^2)}-\sum _{i=2}^{n-1} {\mu _i{\ln (|z_{i+1}|^2-|z_i|^2)}}-\mu _n{\ln (1-{|z_n|^2})}, $$ where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\geq 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.
DOI : 10.21136/CMJ.2023.0208-22
Classification : 32A25, 32Q15, 53C55
Keywords: balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization
@article{10_21136_CMJ_2023_0208_22,
     author = {Zhang, Qiannan and Yang, Huan},
     title = {Remarks on the balanced metric on {Hartogs} triangles with integral exponent},
     journal = {Czechoslovak Mathematical Journal},
     pages = {633--647},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2023},
     doi = {10.21136/CMJ.2023.0208-22},
     mrnumber = {4586916},
     zbl = {07729529},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/}
}
TY  - JOUR
AU  - Zhang, Qiannan
AU  - Yang, Huan
TI  - Remarks on the balanced metric on Hartogs triangles with integral exponent
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 633
EP  - 647
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/
DO  - 10.21136/CMJ.2023.0208-22
LA  - en
ID  - 10_21136_CMJ_2023_0208_22
ER  - 
%0 Journal Article
%A Zhang, Qiannan
%A Yang, Huan
%T Remarks on the balanced metric on Hartogs triangles with integral exponent
%J Czechoslovak Mathematical Journal
%D 2023
%P 633-647
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/
%R 10.21136/CMJ.2023.0208-22
%G en
%F 10_21136_CMJ_2023_0208_22
Zhang, Qiannan; Yang, Huan. Remarks on the balanced metric on Hartogs triangles with integral exponent. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 633-647. doi : 10.21136/CMJ.2023.0208-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/

Cité par Sources :