Keywords: balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization
@article{10_21136_CMJ_2023_0208_22,
author = {Zhang, Qiannan and Yang, Huan},
title = {Remarks on the balanced metric on {Hartogs} triangles with integral exponent},
journal = {Czechoslovak Mathematical Journal},
pages = {633--647},
year = {2023},
volume = {73},
number = {2},
doi = {10.21136/CMJ.2023.0208-22},
mrnumber = {4586916},
zbl = {07729529},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/}
}
TY - JOUR AU - Zhang, Qiannan AU - Yang, Huan TI - Remarks on the balanced metric on Hartogs triangles with integral exponent JO - Czechoslovak Mathematical Journal PY - 2023 SP - 633 EP - 647 VL - 73 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/ DO - 10.21136/CMJ.2023.0208-22 LA - en ID - 10_21136_CMJ_2023_0208_22 ER -
%0 Journal Article %A Zhang, Qiannan %A Yang, Huan %T Remarks on the balanced metric on Hartogs triangles with integral exponent %J Czechoslovak Mathematical Journal %D 2023 %P 633-647 %V 73 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/ %R 10.21136/CMJ.2023.0208-22 %G en %F 10_21136_CMJ_2023_0208_22
Zhang, Qiannan; Yang, Huan. Remarks on the balanced metric on Hartogs triangles with integral exponent. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 633-647. doi: 10.21136/CMJ.2023.0208-22
[1] Arezzo, C., Loi, A.: Moment maps, scalar curvature and quantization of Kähler manifolds. Commun. Math. Phys. 246 (2004), 543-559. | DOI | MR | JFM
[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. | DOI | MR | JFM
[3] Bi, E., Hou, Z.: Canonical metrics on generalized Hartogs triangles. C. R., Math., Acad. Sci. Paris 360 (2022), 305-313. | DOI | MR | JFM
[4] Bi, E., Su, G.: Balanced metrics and Berezin quantization on Hartogs triangles. Ann. Mat. Pura Appl. (4) 200 (2021), 273-285. | DOI | MR | JFM
[5] Bommier-Hato, H., Engliš, M., Youssfi, E.-H.: Radial balanced metrics on the unit ball of the Kepler manifold. J. Math. Anal. Appl. 475 (2019), 736-754. | DOI | MR | JFM
[6] Catlin, D.: The Bergman kernel and a theorem of Tian. Analysis and Geometry in Several Complex Variables Trends in Mathematics. Birkhäuser, Boston (1999), 1-23. | DOI | MR | JFM
[7] Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equation. Commun. Pure Appl. Math. 33 (1980), 507-544. | DOI | MR | JFM
[8] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. | DOI | MR | JFM
[9] Donaldson, S. K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59 (2001), 479-522. | DOI | MR | JFM
[10] Engliš, M.: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348 (1996), 411-479. | DOI | MR | JFM
[11] Engliš, M.: The asymptotics of a Laplace integral on a Kähler manifold. J. Reine Angew. Math. 528 (2000), 1-39. | DOI | MR | JFM
[12] Engliš, M.: Weighted Bergman kernels and balanced metrics. RIMS Kokyuroku 1487 (2006), 40-54. | MR
[13] Feng, Z., Tu, Z.: Balanced metrics on some Hartogs type domains over bounded symmetric domains. Ann. Global Anal. Geom. 47 (2015), 305-333. | DOI | MR | JFM
[14] Hou, Z., Bi, E.: Remarks on regular quantization and holomorphic isometric immersions on Hartogs triangles. Arch. Math. 118 (2022), 605-614. | DOI | MR | JFM
[15] Loi, A., Zedda, M.: Balanced metrics on Hartogs domains. Abh. Math. Semin. Univ. Hamb. 81 (2011), 69-77. | DOI | MR | JFM
[16] Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z. 270 (2012), 1077-1087. | DOI | MR | JFM
[17] Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217 (2008), 1756-1815. | DOI | MR | JFM
[18] Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662 (2012), 1-56. | DOI | MR | JFM
[19] Yang, H., Bi, E.: Remarks on Rawnsley's $\epsilon$-function on the Fock-Bargmann-Hartogs domains. Arch. Math. 112 (2019), 417-427. | DOI | MR | JFM
[20] Zedda, M.: Canonical metrics on Cartan-Hartogs domains. Int. J. Geom. Methods Mod. Phys. 9 (2012), Article ID 1250011, 13 pages. | DOI | MR | JFM
[21] Zedda, M.: Berezin-Engliš' quantization of Cartan-Hartogs domains. J. Geom. Phys. 100 (2016), 62-67. | DOI | MR | JFM
[22] Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 1998 (1998), 317-331. | DOI | MR | JFM
Cité par Sources :