Remarks on the balanced metric on Hartogs triangles with integral exponent
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 633-647
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb {Z}^{+}$, i.e., $$ \Omega _n(\gamma )= \{z=(z_1,\dots ,z_n)\in \mathbb {C}^n\colon |z_1|^{1/\gamma }|z_2|\dots |z_n|1 \} $$ equipped with a natural Kähler form $\omega _{g(\mu )} := \frac 12(i /\pi )\partial \overline {\partial }\Phi _n$ with $$ \Phi _n(z)=-\mu _1{\ln (|z_2|^{2\gamma }- |z_1 |^2)}-\sum _{i=2}^{n-1} {\mu _i{\ln (|z_{i+1}|^2-|z_i|^2)}}-\mu _n{\ln (1-{|z_n|^2})}, $$ where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\geq 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.
DOI :
10.21136/CMJ.2023.0208-22
Classification :
32A25, 32Q15, 53C55
Keywords: balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization
Keywords: balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization
@article{10_21136_CMJ_2023_0208_22,
author = {Zhang, Qiannan and Yang, Huan},
title = {Remarks on the balanced metric on {Hartogs} triangles with integral exponent},
journal = {Czechoslovak Mathematical Journal},
pages = {633--647},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {2023},
doi = {10.21136/CMJ.2023.0208-22},
mrnumber = {4586916},
zbl = {07729529},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/}
}
TY - JOUR AU - Zhang, Qiannan AU - Yang, Huan TI - Remarks on the balanced metric on Hartogs triangles with integral exponent JO - Czechoslovak Mathematical Journal PY - 2023 SP - 633 EP - 647 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/ DO - 10.21136/CMJ.2023.0208-22 LA - en ID - 10_21136_CMJ_2023_0208_22 ER -
%0 Journal Article %A Zhang, Qiannan %A Yang, Huan %T Remarks on the balanced metric on Hartogs triangles with integral exponent %J Czechoslovak Mathematical Journal %D 2023 %P 633-647 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0208-22/ %R 10.21136/CMJ.2023.0208-22 %G en %F 10_21136_CMJ_2023_0208_22
Zhang, Qiannan; Yang, Huan. Remarks on the balanced metric on Hartogs triangles with integral exponent. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 633-647. doi: 10.21136/CMJ.2023.0208-22
Cité par Sources :