On the divisor function over Piatetski-Shapiro sequences
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 613-620
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $[x]$ be an integer part of $x$ and $d(n)$ be the number of positive divisor of $n$. Inspired by some results of M. Jutila (1987), we prove that for $1$, $$ \sum _{n\leq x} d([n^c])= cx\log x +(2\gamma -c)x+O\Bigl (\frac {x}{\log x}\Bigr ), $$ where $\gamma $ is the Euler constant and $[n^c]$ is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
DOI :
10.21136/CMJ.2023.0205-22
Classification :
11B83, 11L07, 11N25, 11N37
Keywords: divisor function; Piatetski-Shapiro sequence; exponential sum
Keywords: divisor function; Piatetski-Shapiro sequence; exponential sum
@article{10_21136_CMJ_2023_0205_22,
author = {Wang, Hui and Zhang, Yu},
title = {On the divisor function over {Piatetski-Shapiro} sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {613--620},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {2023},
doi = {10.21136/CMJ.2023.0205-22},
mrnumber = {4586914},
zbl = {07729527},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/}
}
TY - JOUR AU - Wang, Hui AU - Zhang, Yu TI - On the divisor function over Piatetski-Shapiro sequences JO - Czechoslovak Mathematical Journal PY - 2023 SP - 613 EP - 620 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/ DO - 10.21136/CMJ.2023.0205-22 LA - en ID - 10_21136_CMJ_2023_0205_22 ER -
%0 Journal Article %A Wang, Hui %A Zhang, Yu %T On the divisor function over Piatetski-Shapiro sequences %J Czechoslovak Mathematical Journal %D 2023 %P 613-620 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/ %R 10.21136/CMJ.2023.0205-22 %G en %F 10_21136_CMJ_2023_0205_22
Wang, Hui; Zhang, Yu. On the divisor function over Piatetski-Shapiro sequences. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 613-620. doi: 10.21136/CMJ.2023.0205-22
Cité par Sources :