Keywords: divisor function; Piatetski-Shapiro sequence; exponential sum
@article{10_21136_CMJ_2023_0205_22,
author = {Wang, Hui and Zhang, Yu},
title = {On the divisor function over {Piatetski-Shapiro} sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {613--620},
year = {2023},
volume = {73},
number = {2},
doi = {10.21136/CMJ.2023.0205-22},
mrnumber = {4586914},
zbl = {07729527},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/}
}
TY - JOUR AU - Wang, Hui AU - Zhang, Yu TI - On the divisor function over Piatetski-Shapiro sequences JO - Czechoslovak Mathematical Journal PY - 2023 SP - 613 EP - 620 VL - 73 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/ DO - 10.21136/CMJ.2023.0205-22 LA - en ID - 10_21136_CMJ_2023_0205_22 ER -
%0 Journal Article %A Wang, Hui %A Zhang, Yu %T On the divisor function over Piatetski-Shapiro sequences %J Czechoslovak Mathematical Journal %D 2023 %P 613-620 %V 73 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/ %R 10.21136/CMJ.2023.0205-22 %G en %F 10_21136_CMJ_2023_0205_22
Wang, Hui; Zhang, Yu. On the divisor function over Piatetski-Shapiro sequences. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 613-620. doi: 10.21136/CMJ.2023.0205-22
[1] Arkhipov, G. I., Chubarikov, V. N.: On the distribution of prime numbers in a sequence of the form $[n^c]$. Mosc. Univ. Math. Bull. 54 (1999), 25-35 translation from Vestn. Mosk. Univ., Ser. I 1999 1999 25-35. | MR | JFM
[2] Arkhipov, G. I., Soliba, K. M., Chubarikov, V. N.: On the sum of values of a multidimensional divisor function on a sequence of type $[n^c]$. Mosc. Univ. Math. Bull. 54 (1999), 28-36 translation from Vestn. Mosk. Univ., Ser. I 1999 1999 28-35. | MR | JFM
[3] Graham, S. W., Kolesnik, G.: Van der Corput's Method of Exponential Sums. London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). | DOI | MR | JFM
[4] Heath-Brown, D. R.: The Pjateckii-Šapiro prime number theorem. J. Number Theory 16 (1983), 242-266. | DOI | MR | JFM
[5] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums. Tata Institute Lectures on Mathematics and Physics 80. Springer, Berlin (1987). | MR | JFM
[6] Kolesnik, G. A.: An improvement of the remainder term in the divisor problem. Math. Notes 6 (1969), 784-791 translation from Mat. Zametki 6 1969 545-554. | DOI | MR | JFM
[7] Kolesnik, G. A.: Primes of the form $[n^c]$. Pac. J. Math. 118 (1985), 437-447. | DOI | MR | JFM
[8] Liu, H. Q., Rivat, J.: On the Pjateckii-Šapiro prime number theorem. Bull. Lond. Math. Soc. 24 (1992), 143-147. | DOI | MR | JFM
[9] Lü, G. S., Zhai, W. G.: The sum of multidimensional divisor functions on a special sequence. Adv. Math., Beijing 32 (2003), 660-664 Chinese. | MR | JFM
[10] Piatetski-Shapiro, I. I.: On the distribution of the prime numbers in sequences of the form $[f(n)]$. Mat. Sb., N. Ser. 33 (1953), 559-566 Russian. | MR | JFM
[11] Rivat, J., Sargos, P.: Nombres premiers de la forme $[n^c]$. Can. J. Math. 53 (2001), 414-433 French. | DOI | MR | JFM
[12] Rivat, J., Wu, J.: Prime numbers of the form $[n^c]$. Glasg. Math. J. 43 (2001), 237-254. | DOI | MR | JFM
[13] Vaaler, J. D.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc., New Ser. 12 (1985), 183-216. | DOI | MR | JFM
Cité par Sources :