On the divisor function over Piatetski-Shapiro sequences
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 613-620.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $[x]$ be an integer part of $x$ and $d(n)$ be the number of positive divisor of $n$. Inspired by some results of M. Jutila (1987), we prove that for $1$, $$ \sum _{n\leq x} d([n^c])= cx\log x +(2\gamma -c)x+O\Bigl (\frac {x}{\log x}\Bigr ), $$ where $\gamma $ is the Euler constant and $[n^c]$ is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
DOI : 10.21136/CMJ.2023.0205-22
Classification : 11B83, 11L07, 11N25, 11N37
Keywords: divisor function; Piatetski-Shapiro sequence; exponential sum
@article{10_21136_CMJ_2023_0205_22,
     author = {Wang, Hui and Zhang, Yu},
     title = {On the divisor function over {Piatetski-Shapiro} sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {613--620},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2023},
     doi = {10.21136/CMJ.2023.0205-22},
     mrnumber = {4586914},
     zbl = {07729527},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/}
}
TY  - JOUR
AU  - Wang, Hui
AU  - Zhang, Yu
TI  - On the divisor function over Piatetski-Shapiro sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 613
EP  - 620
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/
DO  - 10.21136/CMJ.2023.0205-22
LA  - en
ID  - 10_21136_CMJ_2023_0205_22
ER  - 
%0 Journal Article
%A Wang, Hui
%A Zhang, Yu
%T On the divisor function over Piatetski-Shapiro sequences
%J Czechoslovak Mathematical Journal
%D 2023
%P 613-620
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/
%R 10.21136/CMJ.2023.0205-22
%G en
%F 10_21136_CMJ_2023_0205_22
Wang, Hui; Zhang, Yu. On the divisor function over Piatetski-Shapiro sequences. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 613-620. doi : 10.21136/CMJ.2023.0205-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0205-22/

Cité par Sources :