Two results of $n$-exangulated categories
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 177-189
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

M. Herschend, Y. Liu, H. Nakaoka introduced $n$-exangulated categories, which are a simultaneous generalization of $n$-exact categories and $(n+2)$-angulated categories. This paper consists of two results on $n$-exangulated categories: (1) we give an equivalent characterization of axiom (EA2); (2) we provide a new way to construct a closed subfunctor of an $n$-exangulated category.
M. Herschend, Y. Liu, H. Nakaoka introduced $n$-exangulated categories, which are a simultaneous generalization of $n$-exact categories and $(n+2)$-angulated categories. This paper consists of two results on $n$-exangulated categories: (1) we give an equivalent characterization of axiom (EA2); (2) we provide a new way to construct a closed subfunctor of an $n$-exangulated category.
DOI : 10.21136/CMJ.2023.0042-23
Classification : 18E10, 18G80
Keywords: $n$-exangulated category; homotopy cartesian square; half exact functor
@article{10_21136_CMJ_2023_0042_23,
     author = {He, Jian and He, Jing and Zhou, Panyue},
     title = {Two results of $n$-exangulated categories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {177--189},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2023.0042-23},
     mrnumber = {4717828},
     zbl = {07893373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0042-23/}
}
TY  - JOUR
AU  - He, Jian
AU  - He, Jing
AU  - Zhou, Panyue
TI  - Two results of $n$-exangulated categories
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 177
EP  - 189
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0042-23/
DO  - 10.21136/CMJ.2023.0042-23
LA  - en
ID  - 10_21136_CMJ_2023_0042_23
ER  - 
%0 Journal Article
%A He, Jian
%A He, Jing
%A Zhou, Panyue
%T Two results of $n$-exangulated categories
%J Czechoslovak Mathematical Journal
%D 2024
%P 177-189
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0042-23/
%R 10.21136/CMJ.2023.0042-23
%G en
%F 10_21136_CMJ_2023_0042_23
He, Jian; He, Jing; Zhou, Panyue. Two results of $n$-exangulated categories. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 177-189. doi: 10.21136/CMJ.2023.0042-23

[1] Herschend, M., Liu, Y., Nakaoka, H.: $n$-exangulated categories (I): Definitions and fundamental properties. J. Algebra 570 (2021), 531-586. | DOI | MR | JFM

[2] Herschend, M., Liu, Y., Nakaoka, H.: $n$-exangulated categories (II): Constructions from $n$-cluster tilting subcategories. J. Algebra 594 (2022), 636-684. | DOI | MR | JFM

[3] Hu, J., Zhang, D., Zhou, P.: Two new classes of $n$-exangulated categories. J. Algebra 568 (2021), 1-21. | DOI | MR | JFM

[4] Kong, X., Lin, Z., Wang, M.: The (ET4) axiom for extriangulated categories. Available at , 13 pages. | arXiv | DOI

[5] Liu, Y., Nakaoka, H.: Hearts of twin cotorsion pairs on extriangulated categories. J. Algebra 528 (2019), 96-149. | DOI | MR | JFM

[6] Liu, Y., Zhou, P.: Frobenius $n$-exangulated categories. J. Algebra 559 (2020), 161-183. | DOI | MR | JFM

[7] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. | MR | JFM

[8] Ogawa, Y.: Auslander's defects over extriangulated categories: An application for the general heart construction. J. Math. Soc. Japan 73 (2021), 1063-1089. | DOI | MR | JFM

[9] Sakai, A.: Relative extriangulated categories arising from half exact functors. J. Algebra 614 (2023), 592-610. | DOI | MR | JFM

Cité par Sources :