Truncations of Gauss' square exponent theorem
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1183-1189.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We establish two truncations of Gauss' square exponent theorem and a finite extension of Euler's identity. For instance, we prove that for any positive integer $n$, $$ \sum _{k=0}^n(-1)^k \left [ \begin{matrix} 2n-k\\ k \end{matrix} \right ] (q;q^2)_{n-k}q^{{k+1\choose 2}} =\sum _{k=-n}^n(-1)^kq^{k^2}, $$ where $$ \left [ \begin{matrix} n\\ m\end{matrix} \right ] =\prod _{k=1}^m\frac {1-q^{n-k+1}}{1-q^k} \quad \text {and} \quad (a;q)_n=\prod _{k=0}^{n-1}(1-aq^k). $$
DOI : 10.21136/CMJ.2022.0429-21
Classification : 11B65, 33D15
Keywords: Gauss' identity; $q$-binomial coefficient; $q$-binomial theorem
@article{10_21136_CMJ_2022_0429_21,
     author = {Liu, Ji-Cai and Zhao, Shan-Shan},
     title = {Truncations of {Gauss'} square exponent theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1183--1189},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0429-21},
     mrnumber = {4517606},
     zbl = {07655793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/}
}
TY  - JOUR
AU  - Liu, Ji-Cai
AU  - Zhao, Shan-Shan
TI  - Truncations of Gauss' square exponent theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1183
EP  - 1189
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/
DO  - 10.21136/CMJ.2022.0429-21
LA  - en
ID  - 10_21136_CMJ_2022_0429_21
ER  - 
%0 Journal Article
%A Liu, Ji-Cai
%A Zhao, Shan-Shan
%T Truncations of Gauss' square exponent theorem
%J Czechoslovak Mathematical Journal
%D 2022
%P 1183-1189
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/
%R 10.21136/CMJ.2022.0429-21
%G en
%F 10_21136_CMJ_2022_0429_21
Liu, Ji-Cai; Zhao, Shan-Shan. Truncations of Gauss' square exponent theorem. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1183-1189. doi : 10.21136/CMJ.2022.0429-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/

Cité par Sources :