Truncations of Gauss' square exponent theorem
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1183-1189
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish two truncations of Gauss' square exponent theorem and a finite extension of Euler's identity. For instance, we prove that for any positive integer $n$, $$ \sum _{k=0}^n(-1)^k \left [ \begin{matrix} 2n-k\\ k \end{matrix} \right ] (q;q^2)_{n-k}q^{{k+1\choose 2}} =\sum _{k=-n}^n(-1)^kq^{k^2}, $$ where $$ \left [ \begin{matrix} n\\ m\end{matrix} \right ] =\prod _{k=1}^m\frac {1-q^{n-k+1}}{1-q^k} \quad \text {and} \quad (a;q)_n=\prod _{k=0}^{n-1}(1-aq^k). $$
We establish two truncations of Gauss' square exponent theorem and a finite extension of Euler's identity. For instance, we prove that for any positive integer $n$, $$ \sum _{k=0}^n(-1)^k \left [ \begin{matrix} 2n-k\\ k \end{matrix} \right ] (q;q^2)_{n-k}q^{{k+1\choose 2}} =\sum _{k=-n}^n(-1)^kq^{k^2}, $$ where $$ \left [ \begin{matrix} n\\ m\end{matrix} \right ] =\prod _{k=1}^m\frac {1-q^{n-k+1}}{1-q^k} \quad \text {and} \quad (a;q)_n=\prod _{k=0}^{n-1}(1-aq^k). $$
DOI : 10.21136/CMJ.2022.0429-21
Classification : 11B65, 33D15
Keywords: Gauss' identity; $q$-binomial coefficient; $q$-binomial theorem
@article{10_21136_CMJ_2022_0429_21,
     author = {Liu, Ji-Cai and Zhao, Shan-Shan},
     title = {Truncations of {Gauss'} square exponent theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1183--1189},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0429-21},
     mrnumber = {4517606},
     zbl = {07655793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/}
}
TY  - JOUR
AU  - Liu, Ji-Cai
AU  - Zhao, Shan-Shan
TI  - Truncations of Gauss' square exponent theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1183
EP  - 1189
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/
DO  - 10.21136/CMJ.2022.0429-21
LA  - en
ID  - 10_21136_CMJ_2022_0429_21
ER  - 
%0 Journal Article
%A Liu, Ji-Cai
%A Zhao, Shan-Shan
%T Truncations of Gauss' square exponent theorem
%J Czechoslovak Mathematical Journal
%D 2022
%P 1183-1189
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/
%R 10.21136/CMJ.2022.0429-21
%G en
%F 10_21136_CMJ_2022_0429_21
Liu, Ji-Cai; Zhao, Shan-Shan. Truncations of Gauss' square exponent theorem. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1183-1189. doi: 10.21136/CMJ.2022.0429-21

[1] Andrews, G. E.: The Theory of Partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[2] Andrews, G. E., Merca, M.: The truncated pentagonal number theorem. J. Comb. Theory, Ser. A 119 (2012), 1639-1643. | DOI | MR | JFM

[3] Berkovich, A., Garvan, F. G.: Some observations on Dyson's new symmetries of partitions. J. Comb. Theory, Ser. A 100 (2002), 61-93. | DOI | MR | JFM

[4] Chern, S.: Note on the truncated generalizations of Gauss's square exponent theorem. Rocky Mt. J. Math. 48 (2018), 2211-2222. | DOI | MR | JFM

[5] Chu, W., Claudio, L. Di: Classical Partition Identities and Basic Hypergeometric Series. Quadermi di Matematica 6. Universita degli Studi di Lecce, Lecce (2004). | JFM

[6] Gu, C.-Y., Guo, V. J. W.: $q$-analogues of two supercongruences of Z.-W. Sun. Czech. Math. J. 70 (2020), 757-765. | DOI | MR | JFM

[7] Guo, V. J. W., Zeng, J.: Multiple extensions of a finite Euler's pentagonal number theorem and the Lucas formulas. Discrete Math. 308 (2008), 4069-4078. | DOI | MR | JFM

[8] Guo, V. J. W., Zeng, J.: Two truncated identities of Gauss. J. Comb. Theory, Ser. A 120 (2013), 700-707. | DOI | MR | JFM

[9] Ismail, M. E. H., Kim, D., Stanton, D.: Lattice paths and positive trigonometric sums. Constr. Approx. 15 (1999), 69-81. | DOI | MR | JFM

[10] Liu, J.-C.: Some finite generalizations of Euler's pentagonal number theorem. Czech. Math. J. 67 (2017), 525-531. | DOI | MR | JFM

[11] Liu, J.-C.: Some finite generalizations of Gauss's square exponent identity. Rocky Mt. J. Math. 47 (2017), 2723-2730. | DOI | MR | JFM

[12] Liu, J.-C., Huang, Z.-Y.: A truncated identity of Euler and related $q$-congruences. Bull. Aust. Math. Soc. 102 (2020), 353-359. | DOI | MR | JFM

[13] Mao, R.: Proofs of two conjectures on truncated series. J. Comb. Theory, Ser. A 130 (2015), 15-25. | DOI | MR | JFM

[14] Shanks, D.: A short proof of an identity of Euler. Proc. Am. Math. Soc. 2 (1951), 747-749. | DOI | MR | JFM

Cité par Sources :