Truncations of Gauss' square exponent theorem
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1183-1189
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We establish two truncations of Gauss' square exponent theorem and a finite extension of Euler's identity. For instance, we prove that for any positive integer $n$, $$ \sum _{k=0}^n(-1)^k \left [ \begin{matrix} 2n-k\\ k \end{matrix} \right ] (q;q^2)_{n-k}q^{{k+1\choose 2}} =\sum _{k=-n}^n(-1)^kq^{k^2}, $$ where $$ \left [ \begin{matrix} n\\ m\end{matrix} \right ] =\prod _{k=1}^m\frac {1-q^{n-k+1}}{1-q^k} \quad \text {and} \quad (a;q)_n=\prod _{k=0}^{n-1}(1-aq^k). $$
DOI :
10.21136/CMJ.2022.0429-21
Classification :
11B65, 33D15
Keywords: Gauss' identity; $q$-binomial coefficient; $q$-binomial theorem
Keywords: Gauss' identity; $q$-binomial coefficient; $q$-binomial theorem
@article{10_21136_CMJ_2022_0429_21,
author = {Liu, Ji-Cai and Zhao, Shan-Shan},
title = {Truncations of {Gauss'} square exponent theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {1183--1189},
publisher = {mathdoc},
volume = {72},
number = {4},
year = {2022},
doi = {10.21136/CMJ.2022.0429-21},
mrnumber = {4517606},
zbl = {07655793},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/}
}
TY - JOUR AU - Liu, Ji-Cai AU - Zhao, Shan-Shan TI - Truncations of Gauss' square exponent theorem JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1183 EP - 1189 VL - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/ DO - 10.21136/CMJ.2022.0429-21 LA - en ID - 10_21136_CMJ_2022_0429_21 ER -
%0 Journal Article %A Liu, Ji-Cai %A Zhao, Shan-Shan %T Truncations of Gauss' square exponent theorem %J Czechoslovak Mathematical Journal %D 2022 %P 1183-1189 %V 72 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0429-21/ %R 10.21136/CMJ.2022.0429-21 %G en %F 10_21136_CMJ_2022_0429_21
Liu, Ji-Cai; Zhao, Shan-Shan. Truncations of Gauss' square exponent theorem. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1183-1189. doi: 10.21136/CMJ.2022.0429-21
Cité par Sources :