On an additive problem of unlike powers in short intervals
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1167-1174
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that almost all positive even integers $n$ can be represented as $p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}-\tfrac 14 N|\leq N^{1-1/54+\varepsilon }$ for $2\leq k\leq 5$. As a consequence, we show that each sufficiently large odd integer $N$ can be written as $p_{1}+p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}- \tfrac 15 N|\leq N^{1-1/54+\varepsilon }$ for $1\leq k\leq 5$.
We prove that almost all positive even integers $n$ can be represented as $p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}-\tfrac 14 N|\leq N^{1-1/54+\varepsilon }$ for $2\leq k\leq 5$. As a consequence, we show that each sufficiently large odd integer $N$ can be written as $p_{1}+p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}- \tfrac 15 N|\leq N^{1-1/54+\varepsilon }$ for $1\leq k\leq 5$.
DOI : 10.21136/CMJ.2022.0417-21
Classification : 11P05, 11P32, 11P55
Keywords: Waring-Goldbach problem; exponential sum over prime in short interval; circle method
@article{10_21136_CMJ_2022_0417_21,
     author = {Zhang, Qingqing},
     title = {On an additive problem of unlike powers in short intervals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1167--1174},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0417-21},
     mrnumber = {4517604},
     zbl = {07655791},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0417-21/}
}
TY  - JOUR
AU  - Zhang, Qingqing
TI  - On an additive problem of unlike powers in short intervals
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1167
EP  - 1174
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0417-21/
DO  - 10.21136/CMJ.2022.0417-21
LA  - en
ID  - 10_21136_CMJ_2022_0417_21
ER  - 
%0 Journal Article
%A Zhang, Qingqing
%T On an additive problem of unlike powers in short intervals
%J Czechoslovak Mathematical Journal
%D 2022
%P 1167-1174
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0417-21/
%R 10.21136/CMJ.2022.0417-21
%G en
%F 10_21136_CMJ_2022_0417_21
Zhang, Qingqing. On an additive problem of unlike powers in short intervals. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1167-1174. doi: 10.21136/CMJ.2022.0417-21

[1] Bauer, C.: An improvement on a theorem of the Goldbach-Waring type. Rocky Mt. J. Math. 31 (2001), 1151-1170. | DOI | MR | JFM

[2] Bauer, C.: A Goldbach-Waring problem for unequal powers of primes. Rocky Mt. J. Math. 38 (2008), 1073-1090. | DOI | MR | JFM

[3] Karatsuba, A. A.: Basic Analytic Number Theory. Springer, Berlin (1993). | DOI | MR | JFM

[4] Li, T., Tang, H.: On a theorem of Prachar involving prime powers. Integers 12 (2012), 321-344. | DOI | MR | JFM

[5] Li, T., Yao, Y.: Exponentional sums over cubes of primes in short intervals and its applications. Math. Z. 299 (2021), 83-99. | DOI | MR | JFM

[6] Prachar, K.: Über ein Problem vom Waring-Goldbach'schen Typ. Monatsh. Math. 57 (1953), 66-74 German. | DOI | MR | JFM

[7] Ren, X. M., Tsang, K. M.: Waring-Goldbach problem for unlike powers. Acta Math. Sin., Engl. Ser. 23 (2007), 265-280. | DOI | MR | JFM

[8] Ren, X. M., Tsang, K. M.: Waring-Goldbach problems for unlike powers. II. Acta Math. Sin., Chin. Ser. 50 (2007), 175-182 Chinese. | MR | JFM

[9] Roth, K. F.: A problem in additive number theory. Proc. Lond. Math. Soc., II. Ser. 53 (1951), 381-395. | DOI | MR | JFM

[10] Zhang, M.: Waring-Goldbach problems for unlike powers with almost equal variables. Front. Math. China 11 (2016), 449-460. | DOI | MR | JFM

[11] Zhao, L. L.: The exceptional set for sums of unlike powers of primes. Acta Math. Sin., Engl. Ser. 30 (2014), 1897-1904. | DOI | MR | JFM

Cité par Sources :