On an additive problem of unlike powers in short intervals
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1167-1174.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that almost all positive even integers $n$ can be represented as $p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}-\tfrac 14 N|\leq N^{1-1/54+\varepsilon }$ for $2\leq k\leq 5$. As a consequence, we show that each sufficiently large odd integer $N$ can be written as $p_{1}+p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}- \tfrac 15 N|\leq N^{1-1/54+\varepsilon }$ for $1\leq k\leq 5$.
DOI : 10.21136/CMJ.2022.0417-21
Classification : 11P05, 11P32, 11P55
Keywords: Waring-Goldbach problem; exponential sum over prime in short interval; circle method
@article{10_21136_CMJ_2022_0417_21,
     author = {Zhang, Qingqing},
     title = {On an additive problem of unlike powers in short intervals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1167--1174},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0417-21},
     mrnumber = {4517604},
     zbl = {07655791},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0417-21/}
}
TY  - JOUR
AU  - Zhang, Qingqing
TI  - On an additive problem of unlike powers in short intervals
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1167
EP  - 1174
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0417-21/
DO  - 10.21136/CMJ.2022.0417-21
LA  - en
ID  - 10_21136_CMJ_2022_0417_21
ER  - 
%0 Journal Article
%A Zhang, Qingqing
%T On an additive problem of unlike powers in short intervals
%J Czechoslovak Mathematical Journal
%D 2022
%P 1167-1174
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0417-21/
%R 10.21136/CMJ.2022.0417-21
%G en
%F 10_21136_CMJ_2022_0417_21
Zhang, Qingqing. On an additive problem of unlike powers in short intervals. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1167-1174. doi : 10.21136/CMJ.2022.0417-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0417-21/

Cité par Sources :