On some finite 2-groups in which the derived group has two generators
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 71-100.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that any finite 2-group, whose abelianization has either 4-rank at most 2 or 8-rank 0 and whose commutator subgroup is generated by two elements, is metabelian. We also prove that the minimal order of any 2-group with nonabelian commutator subgroup of 2-rank 2 is $2^{12}$.
DOI : 10.21136/CMJ.2022.0415-21
Classification : 20D15
Keywords: 2-group; metabelian
@article{10_21136_CMJ_2022_0415_21,
     author = {Benjamin, Elliot and Snyder, Chip},
     title = {On some finite 2-groups in which the derived group has two generators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {71--100},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2023},
     doi = {10.21136/CMJ.2022.0415-21},
     mrnumber = {4541090},
     zbl = {07655756},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0415-21/}
}
TY  - JOUR
AU  - Benjamin, Elliot
AU  - Snyder, Chip
TI  - On some finite 2-groups in which the derived group has two generators
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 71
EP  - 100
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0415-21/
DO  - 10.21136/CMJ.2022.0415-21
LA  - en
ID  - 10_21136_CMJ_2022_0415_21
ER  - 
%0 Journal Article
%A Benjamin, Elliot
%A Snyder, Chip
%T On some finite 2-groups in which the derived group has two generators
%J Czechoslovak Mathematical Journal
%D 2023
%P 71-100
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0415-21/
%R 10.21136/CMJ.2022.0415-21
%G en
%F 10_21136_CMJ_2022_0415_21
Benjamin, Elliot; Snyder, Chip. On some finite 2-groups in which the derived group has two generators. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 71-100. doi : 10.21136/CMJ.2022.0415-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0415-21/

Cité par Sources :