Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 297-310
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. We also establish an asymptotic formula for $1\leq x, y, z \leq H$ such that $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ are square-free. The method we used in this paper is due to Tolev.
We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. We also establish an asymptotic formula for $1\leq x, y, z \leq H$ such that $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ are square-free. The method we used in this paper is due to Tolev.
DOI : 10.21136/CMJ.2022.0154-22
Classification : 11L05, 11L40, 11N37
Keywords: square-free number; Salié sum; Gauss sum
@article{10_21136_CMJ_2022_0154_22,
     author = {Feng, Ya-Fang},
     title = {Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {297--310},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0154-22},
     mrnumber = {4541103},
     zbl = {07655769},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0154-22/}
}
TY  - JOUR
AU  - Feng, Ya-Fang
TI  - Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 297
EP  - 310
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0154-22/
DO  - 10.21136/CMJ.2022.0154-22
LA  - en
ID  - 10_21136_CMJ_2022_0154_22
ER  - 
%0 Journal Article
%A Feng, Ya-Fang
%T Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$
%J Czechoslovak Mathematical Journal
%D 2023
%P 297-310
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0154-22/
%R 10.21136/CMJ.2022.0154-22
%G en
%F 10_21136_CMJ_2022_0154_22
Feng, Ya-Fang. Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 297-310. doi: 10.21136/CMJ.2022.0154-22

[1] Carlitz, L.: On a problem in additive arithmetic. II. Q. J. Math., Oxf. Ser. 3 (1932), 273-290. | DOI | JFM

[2] Dimitrov, S.: On the number of pairs of positive integers $x,y\leq H$ such that $x^2+y^2+1$, $x^2+y^2+2$ are square-free. Acta Arith. 194 (2020), 281-294. | DOI | MR | JFM

[3] Dimitrov, S.: Pairs of square-free values of the type $n^2+1$, $n^2+2$. Czech. Math. J. 71 (2021), 991-1009. | DOI | MR | JFM

[4] Estermann, T.: A new application of the Hardy-Littlewood-Kloosterman method. Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. | DOI | MR | JFM

[5] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers. Math. Ann. 266 (1984), 251-259. | DOI | MR | JFM

[6] Louvel, B.: The first moment of Salié sums. Monatsh. Math. 168 (2012), 523-543. | DOI | MR | JFM

[7] Reuss, T.: Pairs of $k$-free numbers, consecutive square-full numbers. Available at , 28 pages. | arXiv

[8] Tolev, D. I.: On the number of pairs of positive integers $x,y\leq H$ such that $x^2+y^2+1$ is squarefree. Monatsh. Math. 165 (2012), 557-567. | DOI | MR | JFM

[9] Zhou, G.-L., Ding, Y.: On the square-free values of the polynomial $x^2+y^2+z^2+k$. J. Number Theory 236 (2022), 308-322. | DOI | MR | JFM

Cité par Sources :