The potential-Ramsey number of $K_n$ and $K_t^{-k}$
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 513-522
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A nonincreasing sequence $\pi =(d_1,\ldots ,d_n)$ of nonnegative integers is a graphic sequence if it is realizable by a simple graph $G$ on $n$ vertices. In this case, $G$ is referred to as a realization of $\pi $. Given two graphs $G_1$ and $G_2$, A. Busch et al. (2014) introduced the potential-Ramsey number of $G_1$ and $G_2$, denoted by $r_{\rm pot}(G_1,G_2)$, as the smallest nonnegative integer $m$ such that for every $m$-term graphic sequence $\pi $, there is a realization $G$ of $\pi $ with $G_1\subseteq G$ or with $G_2\subseteq \bar {G}$, where $\bar {G}$ is the complement of $G$. For $t\ge 2$ and $0\le k\le \lfloor \frac {t}{2}\rfloor $, let $K_t^{-k}$ be the graph obtained from $K_t$ by deleting $k$ independent edges. We determine $r_{\rm pot}(K_n,K_t^{-k})$ for $t\ge 3$, $1\le k\le \lfloor \frac {t}{2}\rfloor $ and $n\ge \lceil \sqrt {2k}\rceil +2$, which gives the complete solution to a result in J. Z. Du, J. H. Yin (2021).
A nonincreasing sequence $\pi =(d_1,\ldots ,d_n)$ of nonnegative integers is a graphic sequence if it is realizable by a simple graph $G$ on $n$ vertices. In this case, $G$ is referred to as a realization of $\pi $. Given two graphs $G_1$ and $G_2$, A. Busch et al. (2014) introduced the potential-Ramsey number of $G_1$ and $G_2$, denoted by $r_{\rm pot}(G_1,G_2)$, as the smallest nonnegative integer $m$ such that for every $m$-term graphic sequence $\pi $, there is a realization $G$ of $\pi $ with $G_1\subseteq G$ or with $G_2\subseteq \bar {G}$, where $\bar {G}$ is the complement of $G$. For $t\ge 2$ and $0\le k\le \lfloor \frac {t}{2}\rfloor $, let $K_t^{-k}$ be the graph obtained from $K_t$ by deleting $k$ independent edges. We determine $r_{\rm pot}(K_n,K_t^{-k})$ for $t\ge 3$, $1\le k\le \lfloor \frac {t}{2}\rfloor $ and $n\ge \lceil \sqrt {2k}\rceil +2$, which gives the complete solution to a result in J. Z. Du, J. H. Yin (2021).
DOI :
10.21136/CMJ.2022.0017-21
Classification :
05C07, 05C35
Keywords: graphic sequence; potentially $H$-graphic sequence; potential-Ramsey number
Keywords: graphic sequence; potentially $H$-graphic sequence; potential-Ramsey number
@article{10_21136_CMJ_2022_0017_21,
author = {Du, Jin-Zhi and Yin, Jian-Hua},
title = {The {potential-Ramsey} number of $K_n$ and $K_t^{-k}$},
journal = {Czechoslovak Mathematical Journal},
pages = {513--522},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2022.0017-21},
mrnumber = {4412772},
zbl = {07547217},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-21/}
}
TY - JOUR
AU - Du, Jin-Zhi
AU - Yin, Jian-Hua
TI - The potential-Ramsey number of $K_n$ and $K_t^{-k}$
JO - Czechoslovak Mathematical Journal
PY - 2022
SP - 513
EP - 522
VL - 72
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-21/
DO - 10.21136/CMJ.2022.0017-21
LA - en
ID - 10_21136_CMJ_2022_0017_21
ER -
%0 Journal Article
%A Du, Jin-Zhi
%A Yin, Jian-Hua
%T The potential-Ramsey number of $K_n$ and $K_t^{-k}$
%J Czechoslovak Mathematical Journal
%D 2022
%P 513-522
%V 72
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-21/
%R 10.21136/CMJ.2022.0017-21
%G en
%F 10_21136_CMJ_2022_0017_21
Du, Jin-Zhi; Yin, Jian-Hua. The potential-Ramsey number of $K_n$ and $K_t^{-k}$. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 513-522. doi: 10.21136/CMJ.2022.0017-21
Cité par Sources :