The Massera-Schäffer problem for a first order linear differential equation
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 477-511.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the Massera-Schäffer problem for the equation $$ -y'(x)+q(x)y(x)=f(x),\quad x\in \mathbb R, $$ where $f\in L_p^{\rm loc}(\mathbb R),$ $p\in [1,\infty )$ and $0\le q\in L_1^{\rm loc}(\mathbb R).$ By a solution of the problem we mean any function $y,$ absolutely continuous and satisfying the above equation almost everywhere in $\mathbb R.$ Let positive and continuous functions $\mu (x)$ and $\theta (x)$ for $x\in \mathbb R$ be given. Let us introduce the spaces \begin {eqnarray*} L_p(\mathbb R,\mu )=\biggl \{ f\in L_p^{\rm loc}(\mathbb R) \colon \|f\|_{L_p(\mathbb R,\mu )}^p=\int _{-\infty }^\infty |\mu (x)f(x)|^p {\rm d} x\infty \biggr \},\\ L_p(\mathbb R,\theta )=\biggl \{f\in L_p^{\rm loc}(\mathbb R) \colon \|f\|_{L_p(\mathbb R,\theta )}^p=\int _{-\infty }^\infty |\theta (x)f(x)|^p {\rm d} x\infty \biggr \}. \end {eqnarray*} We obtain requirements to the functions $\mu $, $\theta $ and $q$ under which (1) for every function $f\in L_p(\mathbb R,\theta )$ there exists a unique solution $y\in L_p(\mathbb R,\mu )$ of the above equation; (2) there is an absolute constant $c(p)\in (0,\infty )$ such that regardless of the choice of a function $f\in L_p(\mathbb R,\theta )$ the solution of the above equation satisfies the inequality $$\|y\|_{L_p(\mathbb R,\mu )}\le c(p)\|f\|_{L_p(\mathbb R,\theta )}.$$
DOI : 10.21136/CMJ.2021.0548-20
Classification : 34A30
Keywords: admissible space; first order linear differential equation
@article{10_21136_CMJ_2021_0548_20,
     author = {Chernyavskaya, Nina A. and Shuster, Leonid A.},
     title = {The {Massera-Sch\"affer} problem for a first order linear differential equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {477--511},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2022},
     doi = {10.21136/CMJ.2021.0548-20},
     mrnumber = {4412771},
     zbl = {07547216},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0548-20/}
}
TY  - JOUR
AU  - Chernyavskaya, Nina A.
AU  - Shuster, Leonid A.
TI  - The Massera-Schäffer problem for a first order linear differential equation
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 477
EP  - 511
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0548-20/
DO  - 10.21136/CMJ.2021.0548-20
LA  - en
ID  - 10_21136_CMJ_2021_0548_20
ER  - 
%0 Journal Article
%A Chernyavskaya, Nina A.
%A Shuster, Leonid A.
%T The Massera-Schäffer problem for a first order linear differential equation
%J Czechoslovak Mathematical Journal
%D 2022
%P 477-511
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0548-20/
%R 10.21136/CMJ.2021.0548-20
%G en
%F 10_21136_CMJ_2021_0548_20
Chernyavskaya, Nina A.; Shuster, Leonid A. The Massera-Schäffer problem for a first order linear differential equation. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 477-511. doi : 10.21136/CMJ.2021.0548-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0548-20/

Cité par Sources :