The Massera-Schäffer problem for a first order linear differential equation
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 477-511
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the Massera-Schäffer problem for the equation $$ -y'(x)+q(x)y(x)=f(x),\quad x\in \mathbb R, $$ where $f\in L_p^{\rm loc}(\mathbb R),$ $p\in [1,\infty )$ and $0\le q\in L_1^{\rm loc}(\mathbb R).$ By a solution of the problem we mean any function $y,$ absolutely continuous and satisfying the above equation almost everywhere in $\mathbb R.$ Let positive and continuous functions $\mu (x)$ and $\theta (x)$ for $x\in \mathbb R$ be given. Let us introduce the spaces \begin {eqnarray*} L_p(\mathbb R,\mu )=\biggl \{ f\in L_p^{\rm loc}(\mathbb R) \colon \|f\|_{L_p(\mathbb R,\mu )}^p=\int _{-\infty }^\infty |\mu (x)f(x)|^p {\rm d} x\infty \biggr \},\\ L_p(\mathbb R,\theta )=\biggl \{f\in L_p^{\rm loc}(\mathbb R) \colon \|f\|_{L_p(\mathbb R,\theta )}^p=\int _{-\infty }^\infty |\theta (x)f(x)|^p {\rm d} x\infty \biggr \}. \end {eqnarray*} We obtain requirements to the functions $\mu $, $\theta $ and $q$ under which (1) for every function $f\in L_p(\mathbb R,\theta )$ there exists a unique solution $y\in L_p(\mathbb R,\mu )$ of the above equation; (2) there is an absolute constant $c(p)\in (0,\infty )$ such that regardless of the choice of a function $f\in L_p(\mathbb R,\theta )$ the solution of the above equation satisfies the inequality $$\|y\|_{L_p(\mathbb R,\mu )}\le c(p)\|f\|_{L_p(\mathbb R,\theta )}.$$
DOI :
10.21136/CMJ.2021.0548-20
Classification :
34A30
Keywords: admissible space; first order linear differential equation
Keywords: admissible space; first order linear differential equation
@article{10_21136_CMJ_2021_0548_20,
author = {Chernyavskaya, Nina A. and Shuster, Leonid A.},
title = {The {Massera-Sch\"affer} problem for a first order linear differential equation},
journal = {Czechoslovak Mathematical Journal},
pages = {477--511},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {2022},
doi = {10.21136/CMJ.2021.0548-20},
mrnumber = {4412771},
zbl = {07547216},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0548-20/}
}
TY - JOUR AU - Chernyavskaya, Nina A. AU - Shuster, Leonid A. TI - The Massera-Schäffer problem for a first order linear differential equation JO - Czechoslovak Mathematical Journal PY - 2022 SP - 477 EP - 511 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0548-20/ DO - 10.21136/CMJ.2021.0548-20 LA - en ID - 10_21136_CMJ_2021_0548_20 ER -
%0 Journal Article %A Chernyavskaya, Nina A. %A Shuster, Leonid A. %T The Massera-Schäffer problem for a first order linear differential equation %J Czechoslovak Mathematical Journal %D 2022 %P 477-511 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0548-20/ %R 10.21136/CMJ.2021.0548-20 %G en %F 10_21136_CMJ_2021_0548_20
Chernyavskaya, Nina A.; Shuster, Leonid A. The Massera-Schäffer problem for a first order linear differential equation. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 477-511. doi: 10.21136/CMJ.2021.0548-20
Cité par Sources :