Inequalities for Taylor series involving the divisor function
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 331-348
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $$ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|1, $$ where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that $$ H(q) = T(q)- \frac {\log (1-q)}{\log (q)} $$ is strictly increasing on $ (0,1)$, while $$ F(q) = \frac {1-q}{q} H(q) $$ is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality $$ \alpha \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)} T(q) \beta \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)}, \quad 01, $$ holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler's constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac 12$ and $\beta =1$.
Let $$ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|1, $$ where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that $$ H(q) = T(q)- \frac {\log (1-q)}{\log (q)} $$ is strictly increasing on $ (0,1)$, while $$ F(q) = \frac {1-q}{q} H(q) $$ is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality $$ \alpha \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)} T(q) \beta \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)}, \quad 01, $$ holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler's constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac 12$ and $\beta =1$.
DOI :
10.21136/CMJ.2021.0464-20
Classification :
11A25, 26D15, 33D05
Keywords: divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler's constant
Keywords: divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler's constant
@article{10_21136_CMJ_2021_0464_20,
author = {Alzer, Horst and Kwong, Man Kam},
title = {Inequalities for {Taylor} series involving the divisor function},
journal = {Czechoslovak Mathematical Journal},
pages = {331--348},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2021.0464-20},
mrnumber = {4412762},
zbl = {07547207},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/}
}
TY - JOUR AU - Alzer, Horst AU - Kwong, Man Kam TI - Inequalities for Taylor series involving the divisor function JO - Czechoslovak Mathematical Journal PY - 2022 SP - 331 EP - 348 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/ DO - 10.21136/CMJ.2021.0464-20 LA - en ID - 10_21136_CMJ_2021_0464_20 ER -
%0 Journal Article %A Alzer, Horst %A Kwong, Man Kam %T Inequalities for Taylor series involving the divisor function %J Czechoslovak Mathematical Journal %D 2022 %P 331-348 %V 72 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/ %R 10.21136/CMJ.2021.0464-20 %G en %F 10_21136_CMJ_2021_0464_20
Alzer, Horst; Kwong, Man Kam. Inequalities for Taylor series involving the divisor function. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 331-348. doi: 10.21136/CMJ.2021.0464-20
Cité par Sources :