Inequalities for Taylor series involving the divisor function
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 331-348
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $$ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|1, $$ where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that $$ H(q) = T(q)- \frac {\log (1-q)}{\log (q)} $$ is strictly increasing on $ (0,1)$, while $$ F(q) = \frac {1-q}{q} H(q) $$ is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality $$ \alpha \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)} T(q) \beta \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)}, \quad 0
Let $$ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|1, $$ where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that $$ H(q) = T(q)- \frac {\log (1-q)}{\log (q)} $$ is strictly increasing on $ (0,1)$, while $$ F(q) = \frac {1-q}{q} H(q) $$ is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality $$ \alpha \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)} T(q) \beta \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)}, \quad 01, $$ holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler's constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac 12$ and $\beta =1$.
DOI : 10.21136/CMJ.2021.0464-20
Classification : 11A25, 26D15, 33D05
Keywords: divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler's constant
@article{10_21136_CMJ_2021_0464_20,
     author = {Alzer, Horst and Kwong, Man Kam},
     title = {Inequalities for {Taylor} series involving the divisor function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {331--348},
     year = {2022},
     volume = {72},
     number = {2},
     doi = {10.21136/CMJ.2021.0464-20},
     mrnumber = {4412762},
     zbl = {07547207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/}
}
TY  - JOUR
AU  - Alzer, Horst
AU  - Kwong, Man Kam
TI  - Inequalities for Taylor series involving the divisor function
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 331
EP  - 348
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/
DO  - 10.21136/CMJ.2021.0464-20
LA  - en
ID  - 10_21136_CMJ_2021_0464_20
ER  - 
%0 Journal Article
%A Alzer, Horst
%A Kwong, Man Kam
%T Inequalities for Taylor series involving the divisor function
%J Czechoslovak Mathematical Journal
%D 2022
%P 331-348
%V 72
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/
%R 10.21136/CMJ.2021.0464-20
%G en
%F 10_21136_CMJ_2021_0464_20
Alzer, Horst; Kwong, Man Kam. Inequalities for Taylor series involving the divisor function. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 331-348. doi: 10.21136/CMJ.2021.0464-20

[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). | DOI | MR | JFM

[2] Askey, R.: The $q$-gamma and $q$-beta functions. Appl. Anal. 8 (1978), 123-141. | DOI | MR | JFM

[3] Baxley, J. V.: Euler's constant, Taylor's formula, and slowly converging series. Math. Mag. 65 (1992), 302-313. | DOI | MR | JFM

[4] Beckenbach, E. F., Bellman, R.: Inequalities. Ergebnisse der Mathematik und ihrer Grenzgebiete 30. Springer, Berlin (1983). | DOI | MR | JFM

[5] Clausen, T.: Beitrag zur Theorie der Reihen. J. Reine Angew. Math. 3 (1828), 92-95 German. | DOI | MR | JFM

[6] Knopp, K.: Theorie und Anwendung der unendlichen Reihen. Die Grundlehren der mathematischen Wissenschaften 2. Springer, Berlin (1964), German. | DOI | MR | JFM

[7] Krattenthaler, C., Srivastava, H. M.: Summations for basic hypergeometric series involving a $q$-analogue of the digamma function. Comput. Math. Appl. 32 (1996), 73-91. | DOI | MR | JFM

[8] Landau, E.: Sur la série des inverses des nombres de Fibonacci. Bull. Soc. Math. Fr. 27 (1899), 298-300 French \99999JFM99999 30.0248.02.

[9] Merca, M.: A new look on the generating function for the number of divisors. J. Number Theory 149 (2015), 57-69. | DOI | MR | JFM

[10] Merca, M.: Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer. J. Number Theory 160 (2016), 60-75. | DOI | MR | JFM

[11] Mitrinović, D. S., Sándor, J., Crstici, B.: Handbook of Number Theory. Mathematics and its Applications (Dordrecht) 351. Kluwer, Dordrecht (1995). | DOI | MR | JFM

[12] Pólya, G., Szegő, G.: Aufgaben und Lehrsätze aus der Analysis II. Funktionentheorie, Nullstellen, Polynome, Determinanten, Zahlentheorie. Springer, Berlin (1971), German. | DOI | MR | JFM

[13] Salem, A.: A completely monotonic function involving the $q$-gamma and $q$-digamma functions. J. Approx. Theory 164 (2012), 971-980. | DOI | MR | JFM

[14] Salem, A.: A certain class of approximations for the $q$-digamma function. Rocky Mt. J. Math. 46 (2016), 1665-1677. | DOI | MR | JFM

[15] Salem, A.: Sharp lower and upper bounds for the $q$-gamma function. Math. Inequal. Appl. 23 (2020), 855-872. | DOI | MR | JFM

[16] Salem, A., Alzahrani, F.: Complete monotonicity property for two functions related to the $q$-digamma function. J. Math. Inequal. 13 (2019), 37-52. | DOI | MR | JFM

[17] Uchimura, K.: An identity for the divisor generating function arising from sorting theory. J. Comb. Theory, Ser. A 31 (1981), 131-135. | DOI | MR | JFM

[18] Waerden, B. L. van der: Algebra I. Heidelberger Taschenbücher 12. Springer, Berlin (1971), German. | DOI | MR | JFM

Cité par Sources :