Inequalities for Taylor series involving the divisor function
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 331-348.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $$ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|1, $$ where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that $$ H(q) = T(q)- \frac {\log (1-q)}{\log (q)} $$ is strictly increasing on $ (0,1)$, while $$ F(q) = \frac {1-q}{q} H(q) $$ is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality $$ \alpha \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)} T(q) \beta \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)}, \quad 01, $$ holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler's constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac 12$ and $\beta =1$.
DOI : 10.21136/CMJ.2021.0464-20
Classification : 11A25, 26D15, 33D05
Keywords: divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler's constant
@article{10_21136_CMJ_2021_0464_20,
     author = {Alzer, Horst and Kwong, Man Kam},
     title = {Inequalities for {Taylor} series involving the divisor function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {331--348},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2022},
     doi = {10.21136/CMJ.2021.0464-20},
     mrnumber = {4412762},
     zbl = {07547207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/}
}
TY  - JOUR
AU  - Alzer, Horst
AU  - Kwong, Man Kam
TI  - Inequalities for Taylor series involving the divisor function
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 331
EP  - 348
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/
DO  - 10.21136/CMJ.2021.0464-20
LA  - en
ID  - 10_21136_CMJ_2021_0464_20
ER  - 
%0 Journal Article
%A Alzer, Horst
%A Kwong, Man Kam
%T Inequalities for Taylor series involving the divisor function
%J Czechoslovak Mathematical Journal
%D 2022
%P 331-348
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/
%R 10.21136/CMJ.2021.0464-20
%G en
%F 10_21136_CMJ_2021_0464_20
Alzer, Horst; Kwong, Man Kam. Inequalities for Taylor series involving the divisor function. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 331-348. doi : 10.21136/CMJ.2021.0464-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/

Cité par Sources :