Keywords: divisor function; infinite series; inequality; monotonicity; $q$-digamma function; Euler's constant
@article{10_21136_CMJ_2021_0464_20,
author = {Alzer, Horst and Kwong, Man Kam},
title = {Inequalities for {Taylor} series involving the divisor function},
journal = {Czechoslovak Mathematical Journal},
pages = {331--348},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2021.0464-20},
mrnumber = {4412762},
zbl = {07547207},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/}
}
TY - JOUR AU - Alzer, Horst AU - Kwong, Man Kam TI - Inequalities for Taylor series involving the divisor function JO - Czechoslovak Mathematical Journal PY - 2022 SP - 331 EP - 348 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/ DO - 10.21136/CMJ.2021.0464-20 LA - en ID - 10_21136_CMJ_2021_0464_20 ER -
%0 Journal Article %A Alzer, Horst %A Kwong, Man Kam %T Inequalities for Taylor series involving the divisor function %J Czechoslovak Mathematical Journal %D 2022 %P 331-348 %V 72 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0464-20/ %R 10.21136/CMJ.2021.0464-20 %G en %F 10_21136_CMJ_2021_0464_20
Alzer, Horst; Kwong, Man Kam. Inequalities for Taylor series involving the divisor function. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 331-348. doi: 10.21136/CMJ.2021.0464-20
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). | DOI | MR | JFM
[2] Askey, R.: The $q$-gamma and $q$-beta functions. Appl. Anal. 8 (1978), 123-141. | DOI | MR | JFM
[3] Baxley, J. V.: Euler's constant, Taylor's formula, and slowly converging series. Math. Mag. 65 (1992), 302-313. | DOI | MR | JFM
[4] Beckenbach, E. F., Bellman, R.: Inequalities. Ergebnisse der Mathematik und ihrer Grenzgebiete 30. Springer, Berlin (1983). | DOI | MR | JFM
[5] Clausen, T.: Beitrag zur Theorie der Reihen. J. Reine Angew. Math. 3 (1828), 92-95 German. | DOI | MR | JFM
[6] Knopp, K.: Theorie und Anwendung der unendlichen Reihen. Die Grundlehren der mathematischen Wissenschaften 2. Springer, Berlin (1964), German. | DOI | MR | JFM
[7] Krattenthaler, C., Srivastava, H. M.: Summations for basic hypergeometric series involving a $q$-analogue of the digamma function. Comput. Math. Appl. 32 (1996), 73-91. | DOI | MR | JFM
[8] Landau, E.: Sur la série des inverses des nombres de Fibonacci. Bull. Soc. Math. Fr. 27 (1899), 298-300 French \99999JFM99999 30.0248.02.
[9] Merca, M.: A new look on the generating function for the number of divisors. J. Number Theory 149 (2015), 57-69. | DOI | MR | JFM
[10] Merca, M.: Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer. J. Number Theory 160 (2016), 60-75. | DOI | MR | JFM
[11] Mitrinović, D. S., Sándor, J., Crstici, B.: Handbook of Number Theory. Mathematics and its Applications (Dordrecht) 351. Kluwer, Dordrecht (1995). | DOI | MR | JFM
[12] Pólya, G., Szegő, G.: Aufgaben und Lehrsätze aus der Analysis II. Funktionentheorie, Nullstellen, Polynome, Determinanten, Zahlentheorie. Springer, Berlin (1971), German. | DOI | MR | JFM
[13] Salem, A.: A completely monotonic function involving the $q$-gamma and $q$-digamma functions. J. Approx. Theory 164 (2012), 971-980. | DOI | MR | JFM
[14] Salem, A.: A certain class of approximations for the $q$-digamma function. Rocky Mt. J. Math. 46 (2016), 1665-1677. | DOI | MR | JFM
[15] Salem, A.: Sharp lower and upper bounds for the $q$-gamma function. Math. Inequal. Appl. 23 (2020), 855-872. | DOI | MR | JFM
[16] Salem, A., Alzahrani, F.: Complete monotonicity property for two functions related to the $q$-digamma function. J. Math. Inequal. 13 (2019), 37-52. | DOI | MR | JFM
[17] Uchimura, K.: An identity for the divisor generating function arising from sorting theory. J. Comb. Theory, Ser. A 31 (1981), 131-135. | DOI | MR | JFM
[18] Waerden, B. L. van der: Algebra I. Heidelberger Taschenbücher 12. Springer, Berlin (1971), German. | DOI | MR | JFM
Cité par Sources :