Keywords: retract; locally nilpotent derivation; kernel; Zariski's cancellation problem
@article{10_21136_CMJ_2021_0388_20,
author = {Liu, Dayan and Sun, Xiaosong},
title = {Retracts that are kernels of locally nilpotent derivations},
journal = {Czechoslovak Mathematical Journal},
pages = {191--199},
year = {2022},
volume = {72},
number = {1},
doi = {10.21136/CMJ.2021.0388-20},
mrnumber = {4389114},
zbl = {07511561},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0388-20/}
}
TY - JOUR AU - Liu, Dayan AU - Sun, Xiaosong TI - Retracts that are kernels of locally nilpotent derivations JO - Czechoslovak Mathematical Journal PY - 2022 SP - 191 EP - 199 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0388-20/ DO - 10.21136/CMJ.2021.0388-20 LA - en ID - 10_21136_CMJ_2021_0388_20 ER -
%0 Journal Article %A Liu, Dayan %A Sun, Xiaosong %T Retracts that are kernels of locally nilpotent derivations %J Czechoslovak Mathematical Journal %D 2022 %P 191-199 %V 72 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0388-20/ %R 10.21136/CMJ.2021.0388-20 %G en %F 10_21136_CMJ_2021_0388_20
Liu, Dayan; Sun, Xiaosong. Retracts that are kernels of locally nilpotent derivations. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 191-199. doi: 10.21136/CMJ.2021.0388-20
[1] Abhyankar, S. S., Moh, T.-t.: Embeddings of the line in the plane. J. Reine Angew. Math. 276 (1975), 148-166. | DOI | MR | JFM
[2] Chakraborty, S., Dasgupta, N., Dutta, A. K., Gupta, N.: Some results on retracts of polynomial rings. J. Algebra 567 (2021), 243-268. | DOI | MR | JFM
[3] Costa, D. L.: Retracts of polynomial rings. J. Algebra 44 (1977), 492-502. | DOI | MR | JFM
[4] Craighero, P. C.: A result on $m$-flats in $\mathbb{A}_k^n$. Rend. Semin. Mat. Univ. Padova 75 (1986), 39-46. | MR | JFM
[5] Das, P., Dutta, A. K.: On codimension-one $\mathbb{A}^1$-fibration with retraction. J. Commut. Algebra 3 (2011), 207-224. | DOI | MR | JFM
[6] Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). | DOI | MR | JFM
[7] Gong, S.-J., Yu, J.-T.: Test elements, retracts and automorphic orbits. J. Algebra 320 (2008), 3062-3068. | DOI | MR | JFM
[8] Gupta, N.: On the cancellation problem for the affine space $\mathbb{A}^3$ in characteristic $p$. Invent. Math. 195 (2014), 279-288. | DOI | MR | JFM
[9] Gupta, N.: On the family of affine threefolds $x^my=F(x,z,t)$. Compos. Math. 150 (2014), 979-998. | DOI | MR | JFM
[10] Gupta, N.: On Zariski's cancellation problem in positive characteristic. Adv. Math. 264 (2014), 296-307. | DOI | MR | JFM
[11] Jelonek, Z.: The extension of regular and rational embeddings. Math. Ann. 277 (1987), 113-120. | DOI | MR | JFM
[12] Liu, D., Sun, X.: A class of retracts of polynomial algebras. J. Pure Appl. Algebra 222 (2018), 382-386. | DOI | MR | JFM
[13] Mikhalev, A. A., Shpilrain, V., Yu, J.-T.: Combinatorial Methods: Free Groups, Polynomials, and Free Algebras. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 19. Springer, New York (2004). | DOI | MR | JFM
[14] Nagamine, T.: A note on retracts of polynomial rings in three variables. J. Algebra 534 (2019), 339-343. | DOI | MR | JFM
[15] Shpilrain, V., Yu, J.-T.: Polynomial retracts and the Jacobian conjecture. Trans. Am. Math. Soc. 352 (2000), 477-484. | DOI | MR | JFM
[16] Sun, X.: Automorphisms of the endomorphism semigroup of a free algebra. Int. J. Algebra Comput. 25 (2015), 1223-1238. | DOI | MR | JFM
[17] Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace $C^2$. J. Math. Soc. Japan 26 (1974), 241-257 French. | DOI | MR | JFM
[18] Essen, A. van den: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics 190. Birkhäuser, Basel (2000). | DOI | MR | JFM
[19] Essen, A. van den: Around the cancellation problem. Affine Algebraic Geometry Osaka University Press, Osaka (2007), 463-481. | MR | JFM
[20] Yu, J.-T.: Automorphic orbit problem for polynomial algebras. J. Algebra 319 (2008), 966-970. | DOI | MR | JFM
Cité par Sources :