Retracts that are kernels of locally nilpotent derivations
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 191-199
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $k$ be a field of characteristic zero and $B$ a $k$-domain. Let $R$ be a retract of $B$ being the kernel of a locally nilpotent derivation of $B$. We show that if $B=R\oplus I$ for some principal ideal $I$ (in particular, if $B$ is a UFD), then $B= R^{[1]}$, i.e., $B$ is a polynomial algebra over $R$ in one variable. It is natural to ask that, if a retract $R$ of a $k$-UFD $B$ is the kernel of two commuting locally nilpotent derivations of $B$, then does it follow that $B\cong R^{[2]}$? We give a negative answer to this question. The interest in retracts comes from the fact that they are closely related to Zariski's cancellation problem and the Jacobian conjecture in affine algebraic geometry.
Let $k$ be a field of characteristic zero and $B$ a $k$-domain. Let $R$ be a retract of $B$ being the kernel of a locally nilpotent derivation of $B$. We show that if $B=R\oplus I$ for some principal ideal $I$ (in particular, if $B$ is a UFD), then $B= R^{[1]}$, i.e., $B$ is a polynomial algebra over $R$ in one variable. It is natural to ask that, if a retract $R$ of a $k$-UFD $B$ is the kernel of two commuting locally nilpotent derivations of $B$, then does it follow that $B\cong R^{[2]}$? We give a negative answer to this question. The interest in retracts comes from the fact that they are closely related to Zariski's cancellation problem and the Jacobian conjecture in affine algebraic geometry.
DOI : 10.21136/CMJ.2021.0388-20
Classification : 13N15, 14R10
Keywords: retract; locally nilpotent derivation; kernel; Zariski's cancellation problem
@article{10_21136_CMJ_2021_0388_20,
     author = {Liu, Dayan and Sun, Xiaosong},
     title = {Retracts that are kernels of locally  nilpotent derivations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {191--199},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0388-20},
     mrnumber = {4389114},
     zbl = {07511561},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0388-20/}
}
TY  - JOUR
AU  - Liu, Dayan
AU  - Sun, Xiaosong
TI  - Retracts that are kernels of locally  nilpotent derivations
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 191
EP  - 199
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0388-20/
DO  - 10.21136/CMJ.2021.0388-20
LA  - en
ID  - 10_21136_CMJ_2021_0388_20
ER  - 
%0 Journal Article
%A Liu, Dayan
%A Sun, Xiaosong
%T Retracts that are kernels of locally  nilpotent derivations
%J Czechoslovak Mathematical Journal
%D 2022
%P 191-199
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0388-20/
%R 10.21136/CMJ.2021.0388-20
%G en
%F 10_21136_CMJ_2021_0388_20
Liu, Dayan; Sun, Xiaosong. Retracts that are kernels of locally  nilpotent derivations. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 191-199. doi: 10.21136/CMJ.2021.0388-20

[1] Abhyankar, S. S., Moh, T.-t.: Embeddings of the line in the plane. J. Reine Angew. Math. 276 (1975), 148-166. | DOI | MR | JFM

[2] Chakraborty, S., Dasgupta, N., Dutta, A. K., Gupta, N.: Some results on retracts of polynomial rings. J. Algebra 567 (2021), 243-268. | DOI | MR | JFM

[3] Costa, D. L.: Retracts of polynomial rings. J. Algebra 44 (1977), 492-502. | DOI | MR | JFM

[4] Craighero, P. C.: A result on $m$-flats in $\mathbb{A}_k^n$. Rend. Semin. Mat. Univ. Padova 75 (1986), 39-46. | MR | JFM

[5] Das, P., Dutta, A. K.: On codimension-one $\mathbb{A}^1$-fibration with retraction. J. Commut. Algebra 3 (2011), 207-224. | DOI | MR | JFM

[6] Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). | DOI | MR | JFM

[7] Gong, S.-J., Yu, J.-T.: Test elements, retracts and automorphic orbits. J. Algebra 320 (2008), 3062-3068. | DOI | MR | JFM

[8] Gupta, N.: On the cancellation problem for the affine space $\mathbb{A}^3$ in characteristic $p$. Invent. Math. 195 (2014), 279-288. | DOI | MR | JFM

[9] Gupta, N.: On the family of affine threefolds $x^my=F(x,z,t)$. Compos. Math. 150 (2014), 979-998. | DOI | MR | JFM

[10] Gupta, N.: On Zariski's cancellation problem in positive characteristic. Adv. Math. 264 (2014), 296-307. | DOI | MR | JFM

[11] Jelonek, Z.: The extension of regular and rational embeddings. Math. Ann. 277 (1987), 113-120. | DOI | MR | JFM

[12] Liu, D., Sun, X.: A class of retracts of polynomial algebras. J. Pure Appl. Algebra 222 (2018), 382-386. | DOI | MR | JFM

[13] Mikhalev, A. A., Shpilrain, V., Yu, J.-T.: Combinatorial Methods: Free Groups, Polynomials, and Free Algebras. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 19. Springer, New York (2004). | DOI | MR | JFM

[14] Nagamine, T.: A note on retracts of polynomial rings in three variables. J. Algebra 534 (2019), 339-343. | DOI | MR | JFM

[15] Shpilrain, V., Yu, J.-T.: Polynomial retracts and the Jacobian conjecture. Trans. Am. Math. Soc. 352 (2000), 477-484. | DOI | MR | JFM

[16] Sun, X.: Automorphisms of the endomorphism semigroup of a free algebra. Int. J. Algebra Comput. 25 (2015), 1223-1238. | DOI | MR | JFM

[17] Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace $C^2$. J. Math. Soc. Japan 26 (1974), 241-257 French. | DOI | MR | JFM

[18] Essen, A. van den: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics 190. Birkhäuser, Basel (2000). | DOI | MR | JFM

[19] Essen, A. van den: Around the cancellation problem. Affine Algebraic Geometry Osaka University Press, Osaka (2007), 463-481. | MR | JFM

[20] Yu, J.-T.: Automorphic orbit problem for polynomial algebras. J. Algebra 319 (2008), 966-970. | DOI | MR | JFM

Cité par Sources :