A $q$-congruence for a truncated $_{4}\varphi _{3}$ series
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1157-1165.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Phi _n(q)$ denote the $n$th cyclotomic polynomial in $q$. Recently, Guo, Schlosser and Zudilin proved that for any integer $n>1$ with $n\equiv 1\pmod {4}$, $$ \sum _{k=0}^{n-1}\frac {(q^{-1};q^2)_k^2(q^{-2};q^4)_k}{(q^2;q^2)_k^2 (q^4;q^4)_k}q^{6k} \equiv 0\pmod {\Phi _n(q)^2}, $$ where $(a;q)_m=(1-a)(1-aq)\cdots (1-aq^{m-1})$. In this note, we give a generalization of the above $q$-congruence to the modulus $\Phi _n(q)^3$ case. Meanwhile, we give a corresponding $q$-congruence modulo $\Phi _n(q)^2$ for $n\equiv 3\pmod {4}$. Our proof is based on the `creative microscoping' method, recently developed by Guo and Zudilin, and a $_4\varphi _3$ summation formula.
DOI : 10.21136/CMJ.2021.0317-20
Classification : 11A07, 11B65, 33D15
Keywords: basic hypergeometric series; Watson's transformation; $q$-congruence; supercongruence; creative microscoping
@article{10_21136_CMJ_2021_0317_20,
     author = {Guo, Victor J. W. and Wei, Chuanan},
     title = {A $q$-congruence for a truncated $_{4}\varphi _{3}$ series},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1157--1165},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.21136/CMJ.2021.0317-20},
     mrnumber = {4339118},
     zbl = {07442481},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0317-20/}
}
TY  - JOUR
AU  - Guo, Victor J. W.
AU  - Wei, Chuanan
TI  - A $q$-congruence for a truncated $_{4}\varphi _{3}$ series
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1157
EP  - 1165
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0317-20/
DO  - 10.21136/CMJ.2021.0317-20
LA  - en
ID  - 10_21136_CMJ_2021_0317_20
ER  - 
%0 Journal Article
%A Guo, Victor J. W.
%A Wei, Chuanan
%T A $q$-congruence for a truncated $_{4}\varphi _{3}$ series
%J Czechoslovak Mathematical Journal
%D 2021
%P 1157-1165
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0317-20/
%R 10.21136/CMJ.2021.0317-20
%G en
%F 10_21136_CMJ_2021_0317_20
Guo, Victor J. W.; Wei, Chuanan. A $q$-congruence for a truncated $_{4}\varphi _{3}$ series. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1157-1165. doi : 10.21136/CMJ.2021.0317-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0317-20/

Cité par Sources :