The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1133-1147
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly.
DOI :
10.21136/CMJ.2021.0238-20
Classification :
11D59, 11G05
Keywords: elliptic curve; Mordell-Weil group; canonical height
Keywords: elliptic curve; Mordell-Weil group; canonical height
@article{10_21136_CMJ_2021_0238_20,
author = {Rout, Sudhansu Sekhar and Juyal, Abhishek},
title = {The {Mordell-Weil} bases for the elliptic curve $y^2=x^3-m^2x+m^2$},
journal = {Czechoslovak Mathematical Journal},
pages = {1133--1147},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2021},
doi = {10.21136/CMJ.2021.0238-20},
mrnumber = {4339116},
zbl = {07442479},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/}
}
TY - JOUR AU - Rout, Sudhansu Sekhar AU - Juyal, Abhishek TI - The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$ JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1133 EP - 1147 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/ DO - 10.21136/CMJ.2021.0238-20 LA - en ID - 10_21136_CMJ_2021_0238_20 ER -
%0 Journal Article %A Rout, Sudhansu Sekhar %A Juyal, Abhishek %T The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$ %J Czechoslovak Mathematical Journal %D 2021 %P 1133-1147 %V 71 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/ %R 10.21136/CMJ.2021.0238-20 %G en %F 10_21136_CMJ_2021_0238_20
Rout, Sudhansu Sekhar; Juyal, Abhishek. The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1133-1147. doi: 10.21136/CMJ.2021.0238-20
Cité par Sources :