The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1133-1147.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly.
DOI : 10.21136/CMJ.2021.0238-20
Classification : 11D59, 11G05
Keywords: elliptic curve; Mordell-Weil group; canonical height
@article{10_21136_CMJ_2021_0238_20,
     author = {Rout, Sudhansu Sekhar and Juyal, Abhishek},
     title = {The {Mordell-Weil} bases for the elliptic curve $y^2=x^3-m^2x+m^2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1133--1147},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.21136/CMJ.2021.0238-20},
     mrnumber = {4339116},
     zbl = {07442479},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/}
}
TY  - JOUR
AU  - Rout, Sudhansu Sekhar
AU  - Juyal, Abhishek
TI  - The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1133
EP  - 1147
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/
DO  - 10.21136/CMJ.2021.0238-20
LA  - en
ID  - 10_21136_CMJ_2021_0238_20
ER  - 
%0 Journal Article
%A Rout, Sudhansu Sekhar
%A Juyal, Abhishek
%T The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
%J Czechoslovak Mathematical Journal
%D 2021
%P 1133-1147
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/
%R 10.21136/CMJ.2021.0238-20
%G en
%F 10_21136_CMJ_2021_0238_20
Rout, Sudhansu Sekhar; Juyal, Abhishek. The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1133-1147. doi : 10.21136/CMJ.2021.0238-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/

Cité par Sources :