The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1133-1147
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly.
Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly.
DOI : 10.21136/CMJ.2021.0238-20
Classification : 11D59, 11G05
Keywords: elliptic curve; Mordell-Weil group; canonical height
@article{10_21136_CMJ_2021_0238_20,
     author = {Rout, Sudhansu Sekhar and Juyal, Abhishek},
     title = {The {Mordell-Weil} bases for the elliptic curve $y^2=x^3-m^2x+m^2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1133--1147},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0238-20},
     mrnumber = {4339116},
     zbl = {07442479},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/}
}
TY  - JOUR
AU  - Rout, Sudhansu Sekhar
AU  - Juyal, Abhishek
TI  - The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1133
EP  - 1147
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/
DO  - 10.21136/CMJ.2021.0238-20
LA  - en
ID  - 10_21136_CMJ_2021_0238_20
ER  - 
%0 Journal Article
%A Rout, Sudhansu Sekhar
%A Juyal, Abhishek
%T The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
%J Czechoslovak Mathematical Journal
%D 2021
%P 1133-1147
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-20/
%R 10.21136/CMJ.2021.0238-20
%G en
%F 10_21136_CMJ_2021_0238_20
Rout, Sudhansu Sekhar; Juyal, Abhishek. The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1133-1147. doi: 10.21136/CMJ.2021.0238-20

[1] Antoniewicz, A.: On a family of elliptic curves. Univ. Iagell. Acta Math. 43 (2005), 21-32. | MR | JFM

[2] Brown, E., Myers, B. T.: Elliptic curves from Mordell to Diophantus and back. Am. Math. Mon. 109 (2002), 639-649. | DOI | MR | JFM

[3] Cannon, J., Bosma, W., Fieker, C., (eds.), A. Steel: Handbook of Magma Functions. Department of Mathematics, University of Sydney, Sydney (2006).

[4] Eikenberg, E. V.: Rational Points on Some Families of Elliptic Curves: Ph.D. Thesis. University of Maryland, College Park (2004). | MR

[5] Fujita, Y.: Generators for the elliptic curve $y^2=x^3-nx$ of rank at least three. J. Number Theory 133 (2013), 1645-1662. | DOI | MR | JFM

[6] Fujita, Y.: Generators for congruent number curves of ranks at least two and three. J. Ramanujan Math. Soc. 29 (2014), 307-319. | MR | JFM

[7] Fujita, Y., Nara, T.: On the Mordell-Weil group of the elliptic curve $y^2=x^3+n$. J. Number Theory 132 (2012), 448-466. | DOI | MR | JFM

[8] Fujita, Y., Nara, T.: The Mordell-Weil bases for the elliptic curve of the form $y^2=x^3- m^2x+n^2$. Publ. Math. 92 (2018), 79-99. | DOI | MR | JFM

[9] Fujita, Y., Terai, N.: Generators for the elliptic curve $y^2=x^3-nx$. J. Théor. Nombres Bordx. 23 (2011), 403-416. | DOI | MR | JFM

[10] Juyal, A., Kumar, S. D.: On the family of elliptic curves $y^2=x^3-m^2x+p^2$. Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. | DOI | MR | JFM

[11] Oguiso, K., Shioda, T.: The Mordell-Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Pauli 40 (1991), 83-99. | MR | JFM

[12] Shioda, T.: On the Mordell-Weil lattices. Comment. Math. Univ. St. Pauli 39 (1990), 211-240. | MR | JFM

[13] Siksek, S.: Infinite descent on elliptic curves. Rocky Mt. J. Math. 25 (1995), 1501-1538. | DOI | MR | JFM

[14] Silverman, J. H.: Computing heights on elliptic curves. Math. Comput. 51 (1988), 339-358. | DOI | MR | JFM

[15] Silverman, J. H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 151. Springer, New York (1994). | DOI | MR | JFM

[16] Silverman, J. H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106. Springer, New York (2009). | DOI | MR | JFM

[17] Tadić, P.: On the family of elliptic curves $Y^2=X^3-T^2X+1$. Glas. Mat., III. Ser. 47 (2012), 81-93. | DOI | MR | JFM

[18] Tadić, P.: The rank of certain subfamilies of the elliptic curve $Y^2=X^3-X+T^2$. Ann. Math. Inform. 40 (2012), 145-153. | MR | JFM

Cité par Sources :