On discrete mean values of Dirichlet $L$-functions
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1035-1048
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\chi $ be a nonprincipal Dirichlet character modulo a prime number $p\geqslant 3$ and let $\mathfrak a_\chi := \tfrac 12 (1-\chi (-1))$. Define the mean value $$ \mathcal {M}_{p}(-s,\chi ) :=\frac {2}{p-1} \sum \psi \pmod p \psi (-1)=-1 L(1,\psi )L(-s,\chi \bar {\psi }) \quad (\sigma :=\Re s>0). $$ We give an identity for $\mathcal {M}_{p}(-s,\chi )$ which, in particular, shows that $$ \mathcal {M}_{p}(-s,\chi )= L(1-s,\chi )+\mathfrak a_\chi 2p^s L(1,\chi )\zeta (-s) +o(1) \quad (p\rightarrow \infty ) $$ for fixed $0\sigma \frac {1}{2}$ and $|t:=\Im s|=o (p^{(1-2\sigma )/(3+2\sigma )})$.
Let $\chi $ be a nonprincipal Dirichlet character modulo a prime number $p\geqslant 3$ and let $\mathfrak a_\chi := \tfrac 12 (1-\chi (-1))$. Define the mean value $$ \mathcal {M}_{p}(-s,\chi ) :=\frac {2}{p-1} \sum \psi \pmod p \psi (-1)=-1 L(1,\psi )L(-s,\chi \bar {\psi }) \quad (\sigma :=\Re s>0). $$ We give an identity for $\mathcal {M}_{p}(-s,\chi )$ which, in particular, shows that $$ \mathcal {M}_{p}(-s,\chi )= L(1-s,\chi )+\mathfrak a_\chi 2p^s L(1,\chi )\zeta (-s) +o(1) \quad (p\rightarrow \infty ) $$ for fixed $0\sigma \frac {1}{2}$ and $|t:=\Im s|=o (p^{(1-2\sigma )/(3+2\sigma )})$.
DOI : 10.21136/CMJ.2021.0189-20
Classification : 11L40, 11M06
Keywords: Dirichlet $L$-function; mean value; Dirichlet character
@article{10_21136_CMJ_2021_0189_20,
     author = {Elma, Ertan},
     title = {On discrete mean values of {Dirichlet} $L$-functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1035--1048},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0189-20},
     mrnumber = {4339109},
     zbl = {07442472},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0189-20/}
}
TY  - JOUR
AU  - Elma, Ertan
TI  - On discrete mean values of Dirichlet $L$-functions
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1035
EP  - 1048
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0189-20/
DO  - 10.21136/CMJ.2021.0189-20
LA  - en
ID  - 10_21136_CMJ_2021_0189_20
ER  - 
%0 Journal Article
%A Elma, Ertan
%T On discrete mean values of Dirichlet $L$-functions
%J Czechoslovak Mathematical Journal
%D 2021
%P 1035-1048
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0189-20/
%R 10.21136/CMJ.2021.0189-20
%G en
%F 10_21136_CMJ_2021_0189_20
Elma, Ertan. On discrete mean values of Dirichlet $L$-functions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1035-1048. doi: 10.21136/CMJ.2021.0189-20

[1] Davenport, H.: Multiplicative Number Theory. Graduate Texts in Mathematics 74. Springer, New York (2000). | DOI | MR | JFM

[2] Elma, E.: On a problem related to discrete mean values of Dirichlet $L$-functions. J. Number Theory 217 (2020), 36-43. | DOI | MR | JFM

[3] Ivić, A.: The Riemann Zeta-Function: Theory and Applications. Dover Publications, Mineola (2003). | MR | JFM

[4] Kanemitsu, S., Ma, J., Zhang, W.: On the discrete mean value of the product of two Dirichlet $L$-functions. Abh. Math. Semin. Univ. Hamb. 79 (2009), 149-164. | DOI | MR | JFM

[5] Liu, H., Zhang, W.: On the mean value of $L(m,\chi)L(n,\overline{\chi})$ at positive integers $m,n\geq 1$. Acta Arith. 122 (2006), 51-56. | DOI | MR | JFM

[6] Louboutin, S.: Quelques formules exactes pour des moyennes de fonctions $L$ de Dirichlet. Can. Math. Bull. 36 (1993), 190-196. | DOI | MR | JFM

[7] Louboutin, S.: The mean value of $|L(k,\chi)|^2$ at positive rational integers $k\geq 1$. Colloq. Math. 90 (2001), 69-76. | DOI | MR | JFM

[8] Matsumoto, K.: Recent developments in the mean square theory of the Riemann zeta and other zeta-functions. Number Theory Trends in Mathematics. Birkhäuser, Basel (2000), 241-286. | DOI | MR | JFM

[9] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). | DOI | MR | JFM

[10] Motohashi, Y.: A note on the mean value of the zeta and $L$-functions. I. Proc. Japan Acad., Ser. A 61 (1985), 222-224. | DOI | MR | JFM

[11] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function. Oxford Science Publications. Clarendon Press, Oxford (1986). | MR | JFM

[12] Xu, Z., Zhang, W.: Some identities involving the Dirichlet $L$-function. Acta Arith. 130 (2007), 157-166. | DOI | MR | JFM

Cité par Sources :