On discrete mean values of Dirichlet $L$-functions
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1035-1048
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\chi $ be a nonprincipal Dirichlet character modulo a prime number $p\geqslant 3$ and let $\mathfrak a_\chi := \tfrac 12 (1-\chi (-1))$. Define the mean value $$ \mathcal {M}_{p}(-s,\chi ) :=\frac {2}{p-1} \sum \psi \pmod p \psi (-1)=-1 L(1,\psi )L(-s,\chi \bar {\psi }) \quad (\sigma :=\Re s>0). $$ We give an identity for $\mathcal {M}_{p}(-s,\chi )$ which, in particular, shows that $$ \mathcal {M}_{p}(-s,\chi )= L(1-s,\chi )+\mathfrak a_\chi 2p^s L(1,\chi )\zeta (-s) +o(1) \quad (p\rightarrow \infty ) $$ for fixed $0\sigma \frac {1}{2}$ and $|t:=\Im s|=o (p^{(1-2\sigma )/(3+2\sigma )})$.
DOI :
10.21136/CMJ.2021.0189-20
Classification :
11L40, 11M06
Keywords: Dirichlet $L$-function; mean value; Dirichlet character
Keywords: Dirichlet $L$-function; mean value; Dirichlet character
@article{10_21136_CMJ_2021_0189_20,
author = {Elma, Ertan},
title = {On discrete mean values of {Dirichlet} $L$-functions},
journal = {Czechoslovak Mathematical Journal},
pages = {1035--1048},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2021},
doi = {10.21136/CMJ.2021.0189-20},
mrnumber = {4339109},
zbl = {07442472},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0189-20/}
}
TY - JOUR AU - Elma, Ertan TI - On discrete mean values of Dirichlet $L$-functions JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1035 EP - 1048 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0189-20/ DO - 10.21136/CMJ.2021.0189-20 LA - en ID - 10_21136_CMJ_2021_0189_20 ER -
Elma, Ertan. On discrete mean values of Dirichlet $L$-functions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1035-1048. doi: 10.21136/CMJ.2021.0189-20
Cité par Sources :