Keywords: Dirichlet $L$-function; mean value; Dirichlet character
@article{10_21136_CMJ_2021_0189_20,
author = {Elma, Ertan},
title = {On discrete mean values of {Dirichlet} $L$-functions},
journal = {Czechoslovak Mathematical Journal},
pages = {1035--1048},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0189-20},
mrnumber = {4339109},
zbl = {07442472},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0189-20/}
}
TY - JOUR AU - Elma, Ertan TI - On discrete mean values of Dirichlet $L$-functions JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1035 EP - 1048 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0189-20/ DO - 10.21136/CMJ.2021.0189-20 LA - en ID - 10_21136_CMJ_2021_0189_20 ER -
Elma, Ertan. On discrete mean values of Dirichlet $L$-functions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1035-1048. doi: 10.21136/CMJ.2021.0189-20
[1] Davenport, H.: Multiplicative Number Theory. Graduate Texts in Mathematics 74. Springer, New York (2000). | DOI | MR | JFM
[2] Elma, E.: On a problem related to discrete mean values of Dirichlet $L$-functions. J. Number Theory 217 (2020), 36-43. | DOI | MR | JFM
[3] Ivić, A.: The Riemann Zeta-Function: Theory and Applications. Dover Publications, Mineola (2003). | MR | JFM
[4] Kanemitsu, S., Ma, J., Zhang, W.: On the discrete mean value of the product of two Dirichlet $L$-functions. Abh. Math. Semin. Univ. Hamb. 79 (2009), 149-164. | DOI | MR | JFM
[5] Liu, H., Zhang, W.: On the mean value of $L(m,\chi)L(n,\overline{\chi})$ at positive integers $m,n\geq 1$. Acta Arith. 122 (2006), 51-56. | DOI | MR | JFM
[6] Louboutin, S.: Quelques formules exactes pour des moyennes de fonctions $L$ de Dirichlet. Can. Math. Bull. 36 (1993), 190-196. | DOI | MR | JFM
[7] Louboutin, S.: The mean value of $|L(k,\chi)|^2$ at positive rational integers $k\geq 1$. Colloq. Math. 90 (2001), 69-76. | DOI | MR | JFM
[8] Matsumoto, K.: Recent developments in the mean square theory of the Riemann zeta and other zeta-functions. Number Theory Trends in Mathematics. Birkhäuser, Basel (2000), 241-286. | DOI | MR | JFM
[9] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). | DOI | MR | JFM
[10] Motohashi, Y.: A note on the mean value of the zeta and $L$-functions. I. Proc. Japan Acad., Ser. A 61 (1985), 222-224. | DOI | MR | JFM
[11] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function. Oxford Science Publications. Clarendon Press, Oxford (1986). | MR | JFM
[12] Xu, Z., Zhang, W.: Some identities involving the Dirichlet $L$-function. Acta Arith. 130 (2007), 157-166. | DOI | MR | JFM
Cité par Sources :