Keywords: Morse-Bott function; height function; surface; critical value; Reeb graph
@article{10_21136_CMJ_2021_0125_20,
author = {Gelbukh, Irina},
title = {Morse-Bott functions with two critical values on a surface},
journal = {Czechoslovak Mathematical Journal},
pages = {865--880},
year = {2021},
volume = {71},
number = {3},
doi = {10.21136/CMJ.2021.0125-20},
mrnumber = {4295251},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0125-20/}
}
TY - JOUR AU - Gelbukh, Irina TI - Morse-Bott functions with two critical values on a surface JO - Czechoslovak Mathematical Journal PY - 2021 SP - 865 EP - 880 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0125-20/ DO - 10.21136/CMJ.2021.0125-20 LA - en ID - 10_21136_CMJ_2021_0125_20 ER -
Gelbukh, Irina. Morse-Bott functions with two critical values on a surface. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 865-880. doi: 10.21136/CMJ.2021.0125-20
[1] Banyaga, A., Hurtubise, D. E.: A proof of the Morse-Bott lemma. Expo. Math. 22 (2004), 365-373. | DOI | MR | JFM
[2] Banyaga, A., Hurtubise, D. E.: The Morse-Bott inequalities via a dynamical systems approach. Ergodic Theory Dyn. Syst. 29 (2009), 1693-1703. | DOI | MR | JFM
[3] Duan, H., Rees, E. G.: Functions whose critical set consists of two connected manifolds. Bol. Soc. Mat. Mex., II. Ser. 37 (1992), 139-149. | MR | JFM
[4] Gelbukh, I.: Close cohomologous Morse forms with compact leaves. Czech. Math. J. 63 (2013), 515-528. | DOI | MR | JFM
[5] Gelbukh, I.: The co-rank of the fundamental group: The direct product, the first Betti number, and the topology of foliations. Math. Slovaca 67 (2017), 645-656. | DOI | MR | JFM
[6] Gelbukh, I.: Approximation of metric spaces by Reeb graphs: Cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifolds. Filomat 33 (2019), 2031-2049. | DOI | MR
[7] Hurtubise, D. E.: Three approaches to Morse-Bott homology. Afr. Diaspora J. Math. 14 (2012), 145-177. | MR | JFM
[8] Jiang, M.-Y.: Morse homology and degenerate Morse inequalities. Topol. Methods Nonlinear Anal. 13 (1999), 147-161. | DOI | MR | JFM
[9] Kudryavtseva, E. A.: Realization of smooth functions on surfaces as height functions. Sb. Math. 190 (1999), 349-405. | DOI | MR | JFM
[10] Leininger, C. J., Reid, A. W.: The co-rank conjecture for 3-manifold groups. Algebr. Geom. Topol. 2 (2002), 37-50. | DOI | MR | JFM
[11] Martínez-Alfaro, J., Meza-Sarmiento, I. S., Oliveira, R. D. S.: Topological classification of simple Morse Bott functions on surfaces. Real and Complex Singularities Contemporary Mathematics 675. American Mathematical Society, Providence (2016), 165-179. | DOI | MR | JFM
[12] Martínez-Alfaro, J., Meza-Sarmiento, I. S., Oliveira, R. D. S.: Singular levels and topological invariants of Morse-Bott foliations on non-orientable surfaces. Topol. Methods Nonlinear Anal. 51 (2018), 183-213. | DOI | MR | JFM
[13] Milnor, J. W.: Morse theory. Annals of Mathematics Studies 51. Princeton University Press, Princeton (1963). | DOI | MR | JFM
[14] Nicolaescu, L. I.: An Invitation to Morse Theory. Universitext. Springer, Berlin (2011). | DOI | MR | JFM
[15] Panov, D.: Immersion in $R^3$ of a Klein bottle with Morse-Bott height function without centers. MathOverflow Available at https://mathoverflow.net/q/343792 2019.
[16] Prishlyak, A. O.: Topological equivalence of smooth functions with isolated critical points on a closed surface. Topology Appl. 119 (2002), 257-267. | DOI | MR | JFM
[17] Rot, T. O.: The Morse-Bott inequalities, orientations, and the Thom isomorphism in Morse homology. C. R., Math., Acad. Sci. Paris 354 (2016), 1026-1028. | DOI | MR | JFM
[18] Saeki, O.: Reeb spaces of smooth functions on manifolds. (to appear) in Int. Math. Res. Not. | DOI
Cité par Sources :