On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 689-696
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $p$ be an odd prime. By using the elementary methods we prove that: (1) if $2\nmid x$, $p\equiv \pm 3\pmod 8,$ the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution except when $p=3$ or $p$ is of the form $p=2a_{0}^{2}+1$, where $a_{0}>1$ is an odd positive integer. (2) if $2\nmid x$, $2\mid y$, $y\neq 2,4,$ then the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution.
DOI :
10.21136/CMJ.2021.0057-20
Classification :
11B39, 11D61
Keywords: elementary method; Diophantine equation; positive integer solution
Keywords: elementary method; Diophantine equation; positive integer solution
@article{10_21136_CMJ_2021_0057_20,
author = {Tong, Ruizhou},
title = {On the {Diophantine} equation $(2^x-1)(p^y-1)=2z^2$},
journal = {Czechoslovak Mathematical Journal},
pages = {689--696},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {2021},
doi = {10.21136/CMJ.2021.0057-20},
mrnumber = {4295239},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0057-20/}
}
TY - JOUR AU - Tong, Ruizhou TI - On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$ JO - Czechoslovak Mathematical Journal PY - 2021 SP - 689 EP - 696 VL - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0057-20/ DO - 10.21136/CMJ.2021.0057-20 LA - en ID - 10_21136_CMJ_2021_0057_20 ER -
Tong, Ruizhou. On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 689-696. doi: 10.21136/CMJ.2021.0057-20
Cité par Sources :