On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 689-696.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p$ be an odd prime. By using the elementary methods we prove that: (1) if $2\nmid x$, $p\equiv \pm 3\pmod 8,$ the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution except when $p=3$ or $p$ is of the form $p=2a_{0}^{2}+1$, where $a_{0}>1$ is an odd positive integer. (2) if $2\nmid x$, $2\mid y$, $y\neq 2,4,$ then the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution.
DOI : 10.21136/CMJ.2021.0057-20
Classification : 11B39, 11D61
Keywords: elementary method; Diophantine equation; positive integer solution
@article{10_21136_CMJ_2021_0057_20,
     author = {Tong, Ruizhou},
     title = {On the {Diophantine} equation $(2^x-1)(p^y-1)=2z^2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {689--696},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2021},
     doi = {10.21136/CMJ.2021.0057-20},
     mrnumber = {4295239},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0057-20/}
}
TY  - JOUR
AU  - Tong, Ruizhou
TI  - On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 689
EP  - 696
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0057-20/
DO  - 10.21136/CMJ.2021.0057-20
LA  - en
ID  - 10_21136_CMJ_2021_0057_20
ER  - 
%0 Journal Article
%A Tong, Ruizhou
%T On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$
%J Czechoslovak Mathematical Journal
%D 2021
%P 689-696
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0057-20/
%R 10.21136/CMJ.2021.0057-20
%G en
%F 10_21136_CMJ_2021_0057_20
Tong, Ruizhou. On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 689-696. doi : 10.21136/CMJ.2021.0057-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0057-20/

Cité par Sources :