Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 657-674
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. A left $R$-module $M$ is called $(\mathcal {T},n)$-injective if ${\rm Ext}^n_R(C, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat if ${\rm Tor}^R_n(M, C)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a left $R$-module $M$ is called $(\mathcal {T},n)$-projective if ${\rm Ext}^n_R(M, N)=0$ for each $(\mathcal {T},n)$-injective left $R$-module $N$; the ring $R$ is called strongly $(\mathcal {T},n)$-coherent if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then $K$ is $(\mathcal {T},n)$-projective; the ring $R$ is called $(\mathcal {T},n)$-semihereditary if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then ${\rm pd} (K)\leq n-1$. Using the concepts of $(\mathcal {T},n)$-injectivity and $(\mathcal {T},n)$-flatness of modules, we present some characterizations of strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings.
Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. A left $R$-module $M$ is called $(\mathcal {T},n)$-injective if ${\rm Ext}^n_R(C, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat if ${\rm Tor}^R_n(M, C)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a left $R$-module $M$ is called $(\mathcal {T},n)$-projective if ${\rm Ext}^n_R(M, N)=0$ for each $(\mathcal {T},n)$-injective left $R$-module $N$; the ring $R$ is called strongly $(\mathcal {T},n)$-coherent if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then $K$ is $(\mathcal {T},n)$-projective; the ring $R$ is called $(\mathcal {T},n)$-semihereditary if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then ${\rm pd} (K)\leq n-1$. Using the concepts of $(\mathcal {T},n)$-injectivity and $(\mathcal {T},n)$-flatness of modules, we present some characterizations of strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings.
DOI : 10.21136/CMJ.2020.0377-18
Classification : 16D40, 16D50, 16E60, 16P70
Keywords: $(\mathcal {T}, n)$-injective module; $(\mathcal {T}, n)$-flat module; strongly $(\mathcal {T}, n)$-coherent ring; $(\mathcal {T}, n)$-semihereditary ring; $(\mathcal {T}, n)$-regular ring
@article{10_21136_CMJ_2020_0377_18,
     author = {Zhu, Zhanmin},
     title = {Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {657--674},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0377-18},
     mrnumber = {4151697},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/}
}
TY  - JOUR
AU  - Zhu, Zhanmin
TI  - Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 657
EP  - 674
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/
DO  - 10.21136/CMJ.2020.0377-18
LA  - en
ID  - 10_21136_CMJ_2020_0377_18
ER  - 
%0 Journal Article
%A Zhu, Zhanmin
%T Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 657-674
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/
%R 10.21136/CMJ.2020.0377-18
%G en
%F 10_21136_CMJ_2020_0377_18
Zhu, Zhanmin. Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 657-674. doi: 10.21136/CMJ.2020.0377-18

[1] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. | DOI | MR | JFM

[2] Chen, J., Ding, N.: A note on existence of envelopes and covers. Bull. Aust. Math. Soc. 54 (1996), 383-390. | DOI | MR | JFM

[3] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. | DOI | MR | JFM

[4] Costa, D. L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011. | DOI | MR | JFM

[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[6] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62. | DOI | MR | JFM

[7] Jain, S.: Flat and FP-injectivity. Proc. Am. Math. Soc. 41 (1973), 437-442. | DOI | MR | JFM

[8] Kabbaj, S.-E., Mahdou, N.: Trivial extensions defined by coherent-like conditions. Commun. Algebra 32 (2004), 3937-3953. | DOI | MR | JFM

[9] Mao, L., Ding, N.: FP-projective dimensions. Commun. Algebra 33 (2005), 1153-1170. | DOI | MR | JFM

[10] Megibben, C.: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561-566. | DOI | MR | JFM

[11] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. | DOI | MR | JFM

[12] Trlifaj, J.: Cover, Envelopes, and Cotorsion Theories. Lecture Notes for the Workshop ``Homological Methods in Module Theory'' Cortona, September 10-16 (2000).

[13] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings. Commun. Algebra 32 (2004), 2425-2441. | DOI | MR | JFM

[14] Zhu, Z.: On $n$-coherent rings, $n$-hereditary rings and $n$-regular rings. Bull. Iran. Math. Soc. 37 (2011), 251-267. | MR | JFM

[15] Zhu, Z.: Some results on $(n,d)$-injective modules, $(n,d)$-flat modules and $n$-coherent rings. Comment. Math. Univ. Carol. 56 (2015), 505-513. | DOI | MR | JFM

[16] Zhu, Z.: Coherence relative to a weak torsion class. Czech. Math. J. 68 (2018), 455-474. | DOI | MR | JFM

Cité par Sources :