Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 657-674.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. A left $R$-module $M$ is called $(\mathcal {T},n)$-injective if ${\rm Ext}^n_R(C, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat if ${\rm Tor}^R_n(M, C)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a left $R$-module $M$ is called $(\mathcal {T},n)$-projective if ${\rm Ext}^n_R(M, N)=0$ for each $(\mathcal {T},n)$-injective left $R$-module $N$; the ring $R$ is called strongly $(\mathcal {T},n)$-coherent if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then $K$ is $(\mathcal {T},n)$-projective; the ring $R$ is called $(\mathcal {T},n)$-semihereditary if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then ${\rm pd} (K)\leq n-1$. Using the concepts of $(\mathcal {T},n)$-injectivity and $(\mathcal {T},n)$-flatness of modules, we present some characterizations of strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings.
DOI : 10.21136/CMJ.2020.0377-18
Classification : 16D40, 16D50, 16E60, 16P70
Keywords: $(\mathcal {T}, n)$-injective module; $(\mathcal {T}, n)$-flat module; strongly $(\mathcal {T}, n)$-coherent ring; $(\mathcal {T}, n)$-semihereditary ring; $(\mathcal {T}, n)$-regular ring
@article{10_21136_CMJ_2020_0377_18,
     author = {Zhu, Zhanmin},
     title = {Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {657--674},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2020},
     doi = {10.21136/CMJ.2020.0377-18},
     mrnumber = {4151697},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/}
}
TY  - JOUR
AU  - Zhu, Zhanmin
TI  - Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 657
EP  - 674
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/
DO  - 10.21136/CMJ.2020.0377-18
LA  - en
ID  - 10_21136_CMJ_2020_0377_18
ER  - 
%0 Journal Article
%A Zhu, Zhanmin
%T Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 657-674
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/
%R 10.21136/CMJ.2020.0377-18
%G en
%F 10_21136_CMJ_2020_0377_18
Zhu, Zhanmin. Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 657-674. doi : 10.21136/CMJ.2020.0377-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/

Cité par Sources :