Keywords: $(\mathcal {T}, n)$-injective module; $(\mathcal {T}, n)$-flat module; strongly $(\mathcal {T}, n)$-coherent ring; $(\mathcal {T}, n)$-semihereditary ring; $(\mathcal {T}, n)$-regular ring
@article{10_21136_CMJ_2020_0377_18,
author = {Zhu, Zhanmin},
title = {Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings},
journal = {Czechoslovak Mathematical Journal},
pages = {657--674},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0377-18},
mrnumber = {4151697},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/}
}
TY - JOUR
AU - Zhu, Zhanmin
TI - Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
JO - Czechoslovak Mathematical Journal
PY - 2020
SP - 657
EP - 674
VL - 70
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/
DO - 10.21136/CMJ.2020.0377-18
LA - en
ID - 10_21136_CMJ_2020_0377_18
ER -
%0 Journal Article
%A Zhu, Zhanmin
%T Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 657-674
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0377-18/
%R 10.21136/CMJ.2020.0377-18
%G en
%F 10_21136_CMJ_2020_0377_18
Zhu, Zhanmin. Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 657-674. doi: 10.21136/CMJ.2020.0377-18
[1] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. | DOI | MR | JFM
[2] Chen, J., Ding, N.: A note on existence of envelopes and covers. Bull. Aust. Math. Soc. 54 (1996), 383-390. | DOI | MR | JFM
[3] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. | DOI | MR | JFM
[4] Costa, D. L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011. | DOI | MR | JFM
[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). | DOI | MR | JFM
[6] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62. | DOI | MR | JFM
[7] Jain, S.: Flat and FP-injectivity. Proc. Am. Math. Soc. 41 (1973), 437-442. | DOI | MR | JFM
[8] Kabbaj, S.-E., Mahdou, N.: Trivial extensions defined by coherent-like conditions. Commun. Algebra 32 (2004), 3937-3953. | DOI | MR | JFM
[9] Mao, L., Ding, N.: FP-projective dimensions. Commun. Algebra 33 (2005), 1153-1170. | DOI | MR | JFM
[10] Megibben, C.: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561-566. | DOI | MR | JFM
[11] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. | DOI | MR | JFM
[12] Trlifaj, J.: Cover, Envelopes, and Cotorsion Theories. Lecture Notes for the Workshop ``Homological Methods in Module Theory'' Cortona, September 10-16 (2000).
[13] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings. Commun. Algebra 32 (2004), 2425-2441. | DOI | MR | JFM
[14] Zhu, Z.: On $n$-coherent rings, $n$-hereditary rings and $n$-regular rings. Bull. Iran. Math. Soc. 37 (2011), 251-267. | MR | JFM
[15] Zhu, Z.: Some results on $(n,d)$-injective modules, $(n,d)$-flat modules and $n$-coherent rings. Comment. Math. Univ. Carol. 56 (2015), 505-513. | DOI | MR | JFM
[16] Zhu, Z.: Coherence relative to a weak torsion class. Czech. Math. J. 68 (2018), 455-474. | DOI | MR | JFM
Cité par Sources :