P-injective group rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1103-1109 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A ring $R$ is called right P-injective if every homomorphism from a principal right ideal of $R$ to $R_R$ can be extended to a homomorphism from $R_R$ to $R_R$. Let $R$ be a ring and $G$ a group. Based on a result of Nicholson and Yousif, we prove that the group ring ${\rm RG}$ is right P-injective if and only if (a) $R$ is right P-injective; (b) $G$ is locally finite; and (c) for any finite subgroup $H$ of $G$ and any principal right ideal $I$ of ${\rm RH}$, if $f\in {\rm Hom}_R(I_R, R_R)$, then there exists $g\in {\rm Hom}_R({\rm RH}_R, R_R)$ such that $g|_I=f$. Similarly, we also obtain equivalent characterizations of $n$-injective group rings and F-injective group rings.
A ring $R$ is called right P-injective if every homomorphism from a principal right ideal of $R$ to $R_R$ can be extended to a homomorphism from $R_R$ to $R_R$. Let $R$ be a ring and $G$ a group. Based on a result of Nicholson and Yousif, we prove that the group ring ${\rm RG}$ is right P-injective if and only if (a) $R$ is right P-injective; (b) $G$ is locally finite; and (c) for any finite subgroup $H$ of $G$ and any principal right ideal $I$ of ${\rm RH}$, if $f\in {\rm Hom}_R(I_R, R_R)$, then there exists $g\in {\rm Hom}_R({\rm RH}_R, R_R)$ such that $g|_I=f$. Similarly, we also obtain equivalent characterizations of $n$-injective group rings and F-injective group rings.
DOI : 10.21136/CMJ.2020.0159-19
Classification : 16D50, 16S34
Keywords: group ring; P-injective ring; $n$-injective ring; F-injective ring
@article{10_21136_CMJ_2020_0159_19,
     author = {Shen, Liang},
     title = {P-injective group rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1103--1109},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0159-19},
     mrnumber = {4181799},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0159-19/}
}
TY  - JOUR
AU  - Shen, Liang
TI  - P-injective group rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1103
EP  - 1109
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0159-19/
DO  - 10.21136/CMJ.2020.0159-19
LA  - en
ID  - 10_21136_CMJ_2020_0159_19
ER  - 
%0 Journal Article
%A Shen, Liang
%T P-injective group rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 1103-1109
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0159-19/
%R 10.21136/CMJ.2020.0159-19
%G en
%F 10_21136_CMJ_2020_0159_19
Shen, Liang. P-injective group rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1103-1109. doi: 10.21136/CMJ.2020.0159-19

[1] Connell, I. G.: On the group ring. Can. J. Math. 15 (1963), 650-685. | DOI | MR | JFM

[2] Farkas, D. R.: A note on locally finite group algebras. Proc. Am. Math. Soc. 48 (1975), 26-28. | DOI | MR | JFM

[3] Ikeda, M.: Some generalizations of quasi-Frobenius rings. Osaka Math. J. 3 (1951), 227-239. | MR | JFM

[4] Koşan, M. T., Lee, T.-K., Zhou, Y.: On modules over group rings. Algebr. Represent. Theory 17 (2014), 87-102. | DOI | MR | JFM

[5] Nicholson, W. K., Yousif, M. F.: Principally injective rings. J. Algebra 174 (1995), 77-93. | DOI | MR | JFM

[6] Nicholson, W. K., Yousif, M. F.: Quasi-Frobenius Rings. Cambridge Tracts in Mathematics 158, Cambridge University Press, Cambridge (2003). | DOI | MR | JFM

[7] Renault, G.: Sur les anneaux des groupes. C. R. Acad. Sci. Paris, Sér. A 273 (1971), 84-87 French. | MR | JFM

Cité par Sources :