Keywords: unit; algebraic integer; cubic field; quartic field; quintic field
@article{10_21136_CMJ_2020_0019_19,
author = {Louboutin, St\'ephane R.},
title = {When is the order generated by a cubic, quartic or quintic algebraic unit {Galois} invariant: three conjectures},
journal = {Czechoslovak Mathematical Journal},
pages = {905--919},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0019-19},
mrnumber = {4181786},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0019-19/}
}
TY - JOUR AU - Louboutin, Stéphane R. TI - When is the order generated by a cubic, quartic or quintic algebraic unit Galois invariant: three conjectures JO - Czechoslovak Mathematical Journal PY - 2020 SP - 905 EP - 919 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0019-19/ DO - 10.21136/CMJ.2020.0019-19 LA - en ID - 10_21136_CMJ_2020_0019_19 ER -
%0 Journal Article %A Louboutin, Stéphane R. %T When is the order generated by a cubic, quartic or quintic algebraic unit Galois invariant: three conjectures %J Czechoslovak Mathematical Journal %D 2020 %P 905-919 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0019-19/ %R 10.21136/CMJ.2020.0019-19 %G en %F 10_21136_CMJ_2020_0019_19
Louboutin, Stéphane R. When is the order generated by a cubic, quartic or quintic algebraic unit Galois invariant: three conjectures. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 905-919. doi: 10.21136/CMJ.2020.0019-19
[1] Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138, Springer, Berlin (1993). | DOI | MR | JFM
[2] Cox, D. A.: Galois Theory. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, John Wiley & Sons, Chichester (2004). | DOI | MR | JFM
[3] Kappe, L.-C., Warren, B.: An elementary test for the Galois group of a quartic polynomial. Am. Math. Mon. 96 (1989), 133-137. | DOI | MR | JFM
[4] Lee, J. H., Louboutin, S. R.: On the fundamental units of some cubic orders generated by units. Acta Arith. 165 (2014), 283-299. | DOI | MR | JFM
[5] Lee, J. H., Louboutin, S. R.: Determination of the orders generated by a cyclic cubic unit that are Galois invariant. J. Number Theory 148 (2015), 33-39. | DOI | MR | JFM
[6] Lee, J. H., Louboutin, S. R.: Discriminants of cyclic cubic orders. J. Number Theory 168 (2016), 64-71. | DOI | MR | JFM
[7] Liang, J. J.: On the integral basis of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 286/287 (1976), 223-226. | DOI | MR | JFM
[8] Louboutin, S. R.: Hasse unit indices of dihedral octic CM-fields. Math. Nachr. 215 (2000), 107-113. | DOI | MR | JFM
[9] Louboutin, S. R.: Fundamental units for orders generated by a unit. Publ. Math. Besançon, Algèbre et Théorie des Nombres Presses Universitaires de Franche-Comté, Besançon (2015), 41-68. | MR | JFM
[10] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics, Springer, Berlin; PWN-Polish Scientific Publishers, Warszawa (1990). | DOI | MR | JFM
[11] Stevenhagen, P.: Algebra I. Dutch Universiteit Leiden, Technische Universiteit Delft, Leiden, Delft (2017). Available at \brokenlink{ http://websites.math.leidenuniv.nl/algebra/algebra1.{pdf}}
[12] Thaine, F.: On the construction of families of cyclic polynomials whose roots are units. Exp. Math. 17 (2008), 315-331. | DOI | MR | JFM
[13] Thomas, E.: Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33-55. | DOI | MR | JFM
[14] Yamagata, K., Yamagishi, M.: On the ring of integers of real cyclotomic fields. Proc. Japan Acad., Ser. A 92 (2016), 73-76. | DOI | MR | JFM
Cité par Sources :