Some results on Poincaré sets
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 891-903
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is known that a set $H$ of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if $\dim _{\mathcal {H}}(X_{H})=0$, where $$ X_{H}:=\biggl \{ x=\sum ^{\infty }_{n=1} \frac {x_{n}}{2^{n}} \colon x_{n}\in \{0,1\}, x_{n} x_{n+h}=0 \ \text {for all} \ n\geq 1, \ h\in H\biggr \} $$ and $\dim _{\mathcal {H}}$ denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set $X_H$ by replacing $2$ with $b>2$. It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.
It is known that a set $H$ of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if $\dim _{\mathcal {H}}(X_{H})=0$, where $$ X_{H}:=\biggl \{ x=\sum ^{\infty }_{n=1} \frac {x_{n}}{2^{n}} \colon x_{n}\in \{0,1\}, x_{n} x_{n+h}=0 \ \text {for all} \ n\geq 1, \ h\in H\biggr \} $$ and $\dim _{\mathcal {H}}$ denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set $X_H$ by replacing $2$ with $b>2$. It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.
DOI : 10.21136/CMJ.2020.0001-19
Classification : 11A07, 37B20
Keywords: Poincaré set; homogeneous set; Hausdorff dimension
@article{10_21136_CMJ_2020_0001_19,
     author = {Tang, Min-wei and Wu, Zhi-Yi},
     title = {Some results on {Poincar\'e} sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {891--903},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0001-19},
     mrnumber = {4151712},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0001-19/}
}
TY  - JOUR
AU  - Tang, Min-wei
AU  - Wu, Zhi-Yi
TI  - Some results on Poincaré sets
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 891
EP  - 903
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0001-19/
DO  - 10.21136/CMJ.2020.0001-19
LA  - en
ID  - 10_21136_CMJ_2020_0001_19
ER  - 
%0 Journal Article
%A Tang, Min-wei
%A Wu, Zhi-Yi
%T Some results on Poincaré sets
%J Czechoslovak Mathematical Journal
%D 2020
%P 891-903
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0001-19/
%R 10.21136/CMJ.2020.0001-19
%G en
%F 10_21136_CMJ_2020_0001_19
Tang, Min-wei; Wu, Zhi-Yi. Some results on Poincaré sets. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 891-903. doi: 10.21136/CMJ.2020.0001-19

[1] Bergelson, V., Lesigne, E.: Van der Corput sets in ${\mathbb Z}^d$. Colloq. Math. 110 (2008), 1-49. | DOI | MR | JFM

[2] Bishop, C. J., Peres, Y.: Fractals in Probability and Analysis. Cambridge Studies in Advanced Mathematics 162, Cambridge University Press, Cambridge (2017). | DOI | MR | JFM

[3] Bourgain, J.: Ruzsa's problem on sets of recurrence. Isr. J. Math. 59 (1987), 150-166. | DOI | MR | JFM

[4] Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. Wiley, New York (2003). | DOI | MR | JFM

[5] Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31 (1977), 204-256. | DOI | MR | JFM

[6] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princenton University Press, Princenton (1981). | DOI | MR | JFM

[7] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84, Springer, New York (1990). | DOI | MR | JFM

[8] Kamae, T., France, M. Mendès: Van der Corput's difference theorem. Isr. J. Math. 31 (1978), 335-342. | DOI | MR | JFM

[9] Lê, T. H.: Problems and results on intersective sets. Combinatorial and Additive Number Theory---CANT 2011 Springer Proceedings in Mathematics & Statistics 101, Springer, New York (2014), 115-128. | DOI | MR | JFM

[10] Montgomery, H. L.: Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series in Mathematics 84, American Mathematical Society, Providence (1994). | DOI | MR | JFM

[11] Ruzsa, I. Z.: Uniform distribution, positive trigonometric polynomials and difference sets. Sémin. Théor. Nombres, Univ. Bordeaux I. (1982), Article ID 18, 18 pages. | MR | JFM

[12] Sárközy, A.: On difference sets of sequences of integers I. Acta Math. Acad. Sci. Hung. 31 (1978), 125-149. | DOI | MR | JFM

[13] Sárközy, A.: On difference sets of sequences of integers II. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 21 (1978), 45-53. | MR | JFM

[14] Sárközy, A.: On difference sets of sequences of integers III. Acta Math. Acad. Sci. Hung. 31 (1978), 355-386. | DOI | MR | JFM

Cité par Sources :