Some results on Poincaré sets
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 891-903
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is known that a set $H$ of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if $\dim _{\mathcal {H}}(X_{H})=0$, where $$ X_{H}:=\biggl \{ x=\sum ^{\infty }_{n=1} \frac {x_{n}}{2^{n}} \colon x_{n}\in \{0,1\}, x_{n} x_{n+h}=0 \ \text {for all} \ n\geq 1, \ h\in H\biggr \} $$ and $\dim _{\mathcal {H}}$ denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set $X_H$ by replacing $2$ with $b>2$. It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.
DOI :
10.21136/CMJ.2020.0001-19
Classification :
11A07, 37B20
Keywords: Poincaré set; homogeneous set; Hausdorff dimension
Keywords: Poincaré set; homogeneous set; Hausdorff dimension
@article{10_21136_CMJ_2020_0001_19,
author = {Tang, Min-wei and Wu, Zhi-Yi},
title = {Some results on {Poincar\'e} sets},
journal = {Czechoslovak Mathematical Journal},
pages = {891--903},
publisher = {mathdoc},
volume = {70},
number = {3},
year = {2020},
doi = {10.21136/CMJ.2020.0001-19},
mrnumber = {4151712},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0001-19/}
}
TY - JOUR AU - Tang, Min-wei AU - Wu, Zhi-Yi TI - Some results on Poincaré sets JO - Czechoslovak Mathematical Journal PY - 2020 SP - 891 EP - 903 VL - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0001-19/ DO - 10.21136/CMJ.2020.0001-19 LA - en ID - 10_21136_CMJ_2020_0001_19 ER -
Tang, Min-wei; Wu, Zhi-Yi. Some results on Poincaré sets. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 891-903. doi: 10.21136/CMJ.2020.0001-19
Cité par Sources :