Keywords: Poincaré set; homogeneous set; Hausdorff dimension
@article{10_21136_CMJ_2020_0001_19,
author = {Tang, Min-wei and Wu, Zhi-Yi},
title = {Some results on {Poincar\'e} sets},
journal = {Czechoslovak Mathematical Journal},
pages = {891--903},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0001-19},
mrnumber = {4151712},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0001-19/}
}
TY - JOUR AU - Tang, Min-wei AU - Wu, Zhi-Yi TI - Some results on Poincaré sets JO - Czechoslovak Mathematical Journal PY - 2020 SP - 891 EP - 903 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0001-19/ DO - 10.21136/CMJ.2020.0001-19 LA - en ID - 10_21136_CMJ_2020_0001_19 ER -
Tang, Min-wei; Wu, Zhi-Yi. Some results on Poincaré sets. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 891-903. doi: 10.21136/CMJ.2020.0001-19
[1] Bergelson, V., Lesigne, E.: Van der Corput sets in ${\mathbb Z}^d$. Colloq. Math. 110 (2008), 1-49. | DOI | MR | JFM
[2] Bishop, C. J., Peres, Y.: Fractals in Probability and Analysis. Cambridge Studies in Advanced Mathematics 162, Cambridge University Press, Cambridge (2017). | DOI | MR | JFM
[3] Bourgain, J.: Ruzsa's problem on sets of recurrence. Isr. J. Math. 59 (1987), 150-166. | DOI | MR | JFM
[4] Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. Wiley, New York (2003). | DOI | MR | JFM
[5] Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31 (1977), 204-256. | DOI | MR | JFM
[6] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princenton University Press, Princenton (1981). | DOI | MR | JFM
[7] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84, Springer, New York (1990). | DOI | MR | JFM
[8] Kamae, T., France, M. Mendès: Van der Corput's difference theorem. Isr. J. Math. 31 (1978), 335-342. | DOI | MR | JFM
[9] Lê, T. H.: Problems and results on intersective sets. Combinatorial and Additive Number Theory---CANT 2011 Springer Proceedings in Mathematics & Statistics 101, Springer, New York (2014), 115-128. | DOI | MR | JFM
[10] Montgomery, H. L.: Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series in Mathematics 84, American Mathematical Society, Providence (1994). | DOI | MR | JFM
[11] Ruzsa, I. Z.: Uniform distribution, positive trigonometric polynomials and difference sets. Sémin. Théor. Nombres, Univ. Bordeaux I. (1982), Article ID 18, 18 pages. | MR | JFM
[12] Sárközy, A.: On difference sets of sequences of integers I. Acta Math. Acad. Sci. Hung. 31 (1978), 125-149. | DOI | MR | JFM
[13] Sárközy, A.: On difference sets of sequences of integers II. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 21 (1978), 45-53. | MR | JFM
[14] Sárközy, A.: On difference sets of sequences of integers III. Acta Math. Acad. Sci. Hung. 31 (1978), 355-386. | DOI | MR | JFM
Cité par Sources :