Note on improper coloring of $1$-planar graphs
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 955-968.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A graph $G=(V,E)$ is called improperly $(d_1, \dots , d_k)$-colorable if the vertex set $V$ can be partitioned into subsets $V_1, \dots , V_k$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \leq i \leq k$. In this paper, we mainly study the improper coloring of $1$-planar graphs and show that $1$-planar graphs with girth at least $7$ are $(2,0,0,0)$-colorable.
DOI : 10.21136/CMJ.2019.0558-17
Classification : 05C15
Keywords: improper coloring; 1-planar graph; discharging method
@article{10_21136_CMJ_2019_0558_17,
     author = {Chu, Yanan and Sun, Lei and Yue, Jun},
     title = {Note on improper coloring of $1$-planar graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {955--968},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.21136/CMJ.2019.0558-17},
     mrnumber = {4039612},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0558-17/}
}
TY  - JOUR
AU  - Chu, Yanan
AU  - Sun, Lei
AU  - Yue, Jun
TI  - Note on improper coloring of $1$-planar graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 955
EP  - 968
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0558-17/
DO  - 10.21136/CMJ.2019.0558-17
LA  - en
ID  - 10_21136_CMJ_2019_0558_17
ER  - 
%0 Journal Article
%A Chu, Yanan
%A Sun, Lei
%A Yue, Jun
%T Note on improper coloring of $1$-planar graphs
%J Czechoslovak Mathematical Journal
%D 2019
%P 955-968
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0558-17/
%R 10.21136/CMJ.2019.0558-17
%G en
%F 10_21136_CMJ_2019_0558_17
Chu, Yanan; Sun, Lei; Yue, Jun. Note on improper coloring of $1$-planar graphs. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 955-968. doi : 10.21136/CMJ.2019.0558-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0558-17/

Cité par Sources :