Note on improper coloring of $1$-planar graphs
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 955-968
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A graph $G=(V,E)$ is called improperly $(d_1, \dots , d_k)$-colorable if the vertex set $V$ can be partitioned into subsets $V_1, \dots , V_k$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \leq i \leq k$. In this paper, we mainly study the improper coloring of $1$-planar graphs and show that $1$-planar graphs with girth at least $7$ are $(2,0,0,0)$-colorable.
A graph $G=(V,E)$ is called improperly $(d_1, \dots , d_k)$-colorable if the vertex set $V$ can be partitioned into subsets $V_1, \dots , V_k$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \leq i \leq k$. In this paper, we mainly study the improper coloring of $1$-planar graphs and show that $1$-planar graphs with girth at least $7$ are $(2,0,0,0)$-colorable.
DOI :
10.21136/CMJ.2019.0558-17
Classification :
05C15
Keywords: improper coloring; 1-planar graph; discharging method
Keywords: improper coloring; 1-planar graph; discharging method
@article{10_21136_CMJ_2019_0558_17,
author = {Chu, Yanan and Sun, Lei and Yue, Jun},
title = {Note on improper coloring of $1$-planar graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {955--968},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0558-17},
mrnumber = {4039612},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0558-17/}
}
TY - JOUR AU - Chu, Yanan AU - Sun, Lei AU - Yue, Jun TI - Note on improper coloring of $1$-planar graphs JO - Czechoslovak Mathematical Journal PY - 2019 SP - 955 EP - 968 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0558-17/ DO - 10.21136/CMJ.2019.0558-17 LA - en ID - 10_21136_CMJ_2019_0558_17 ER -
%0 Journal Article %A Chu, Yanan %A Sun, Lei %A Yue, Jun %T Note on improper coloring of $1$-planar graphs %J Czechoslovak Mathematical Journal %D 2019 %P 955-968 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0558-17/ %R 10.21136/CMJ.2019.0558-17 %G en %F 10_21136_CMJ_2019_0558_17
Chu, Yanan; Sun, Lei; Yue, Jun. Note on improper coloring of $1$-planar graphs. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 955-968. doi: 10.21136/CMJ.2019.0558-17
Cité par Sources :