Integral points on the elliptic curve $y^2=x^3-4p^2x$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 853-862
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $p$ be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve $E\colon y^2=x^3-4p^2x$. Further, let $N(p)$ denote the number of pairs of integral points $(x,\pm y)$ on $E$ with $y>0$. We prove that if $p\geq 17$, then $N(p)\leq 4$ or $1$ depending on whether $p\equiv 1\pmod 8$ or $p\equiv -1\pmod 8$.
DOI :
10.21136/CMJ.2019.0529-17
Classification :
11D25, 11G05, 11Y50
Keywords: elliptic curve; integral point; quadratic equation; quartic Diophantine equation
Keywords: elliptic curve; integral point; quadratic equation; quartic Diophantine equation
@article{10_21136_CMJ_2019_0529_17,
author = {Yang, Hai and Fu, Ruiqin},
title = {Integral points on the elliptic curve $y^2=x^3-4p^2x$},
journal = {Czechoslovak Mathematical Journal},
pages = {853--862},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2019},
doi = {10.21136/CMJ.2019.0529-17},
mrnumber = {3989282},
zbl = {07088820},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/}
}
TY - JOUR AU - Yang, Hai AU - Fu, Ruiqin TI - Integral points on the elliptic curve $y^2=x^3-4p^2x$ JO - Czechoslovak Mathematical Journal PY - 2019 SP - 853 EP - 862 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/ DO - 10.21136/CMJ.2019.0529-17 LA - en ID - 10_21136_CMJ_2019_0529_17 ER -
%0 Journal Article %A Yang, Hai %A Fu, Ruiqin %T Integral points on the elliptic curve $y^2=x^3-4p^2x$ %J Czechoslovak Mathematical Journal %D 2019 %P 853-862 %V 69 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/ %R 10.21136/CMJ.2019.0529-17 %G en %F 10_21136_CMJ_2019_0529_17
Yang, Hai; Fu, Ruiqin. Integral points on the elliptic curve $y^2=x^3-4p^2x$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 853-862. doi: 10.21136/CMJ.2019.0529-17
Cité par Sources :