Integral points on the elliptic curve $y^2=x^3-4p^2x$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 853-862.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p$ be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve $E\colon y^2=x^3-4p^2x$. Further, let $N(p)$ denote the number of pairs of integral points $(x,\pm y)$ on $E$ with $y>0$. We prove that if $p\geq 17$, then $N(p)\leq 4$ or $1$ depending on whether $p\equiv 1\pmod 8$ or $p\equiv -1\pmod 8$.
DOI : 10.21136/CMJ.2019.0529-17
Classification : 11D25, 11G05, 11Y50
Keywords: elliptic curve; integral point; quadratic equation; quartic Diophantine equation
@article{10_21136_CMJ_2019_0529_17,
     author = {Yang, Hai and Fu, Ruiqin},
     title = {Integral points on the elliptic curve $y^2=x^3-4p^2x$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {853--862},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2019},
     doi = {10.21136/CMJ.2019.0529-17},
     mrnumber = {3989282},
     zbl = {07088820},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/}
}
TY  - JOUR
AU  - Yang, Hai
AU  - Fu, Ruiqin
TI  - Integral points on the elliptic curve $y^2=x^3-4p^2x$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 853
EP  - 862
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/
DO  - 10.21136/CMJ.2019.0529-17
LA  - en
ID  - 10_21136_CMJ_2019_0529_17
ER  - 
%0 Journal Article
%A Yang, Hai
%A Fu, Ruiqin
%T Integral points on the elliptic curve $y^2=x^3-4p^2x$
%J Czechoslovak Mathematical Journal
%D 2019
%P 853-862
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/
%R 10.21136/CMJ.2019.0529-17
%G en
%F 10_21136_CMJ_2019_0529_17
Yang, Hai; Fu, Ruiqin. Integral points on the elliptic curve $y^2=x^3-4p^2x$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 853-862. doi : 10.21136/CMJ.2019.0529-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/

Cité par Sources :