Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_CMJ_2019_0529_17, author = {Yang, Hai and Fu, Ruiqin}, title = {Integral points on the elliptic curve $y^2=x^3-4p^2x$}, journal = {Czechoslovak Mathematical Journal}, pages = {853--862}, publisher = {mathdoc}, volume = {69}, number = {3}, year = {2019}, doi = {10.21136/CMJ.2019.0529-17}, mrnumber = {3989282}, zbl = {07088820}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/} }
TY - JOUR AU - Yang, Hai AU - Fu, Ruiqin TI - Integral points on the elliptic curve $y^2=x^3-4p^2x$ JO - Czechoslovak Mathematical Journal PY - 2019 SP - 853 EP - 862 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/ DO - 10.21136/CMJ.2019.0529-17 LA - en ID - 10_21136_CMJ_2019_0529_17 ER -
%0 Journal Article %A Yang, Hai %A Fu, Ruiqin %T Integral points on the elliptic curve $y^2=x^3-4p^2x$ %J Czechoslovak Mathematical Journal %D 2019 %P 853-862 %V 69 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/ %R 10.21136/CMJ.2019.0529-17 %G en %F 10_21136_CMJ_2019_0529_17
Yang, Hai; Fu, Ruiqin. Integral points on the elliptic curve $y^2=x^3-4p^2x$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 853-862. doi : 10.21136/CMJ.2019.0529-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0529-17/
Cité par Sources :