Keywords: $\{K_{1, 4}, K_{1, 4}+e\}$-free graph; neighborhood union; traceable
@article{10_21136_CMJ_2019_0365_17,
author = {Zheng, Wei and Wang, Ligong},
title = {Traceability in $\{K_{1,4},K_{1,4}+e\}$-free graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {431--442},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2019.0365-17},
mrnumber = {3959956},
zbl = {07088796},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0365-17/}
}
TY - JOUR
AU - Zheng, Wei
AU - Wang, Ligong
TI - Traceability in $\{K_{1,4},K_{1,4}+e\}$-free graphs
JO - Czechoslovak Mathematical Journal
PY - 2019
SP - 431
EP - 442
VL - 69
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0365-17/
DO - 10.21136/CMJ.2019.0365-17
LA - en
ID - 10_21136_CMJ_2019_0365_17
ER -
%0 Journal Article
%A Zheng, Wei
%A Wang, Ligong
%T Traceability in $\{K_{1,4},K_{1,4}+e\}$-free graphs
%J Czechoslovak Mathematical Journal
%D 2019
%P 431-442
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0365-17/
%R 10.21136/CMJ.2019.0365-17
%G en
%F 10_21136_CMJ_2019_0365_17
Zheng, Wei; Wang, Ligong. Traceability in $\{K_{1,4},K_{1,4}+e\}$-free graphs. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 431-442. doi: 10.21136/CMJ.2019.0365-17
[1] Bauer, D., Fan, G., Veldman, H. J.: Hamiltonian properties of graphs with large neighborhood unions. Discrete Math. 96 (1991), 33-49. | DOI | MR | JFM
[2] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier Publishing, New York (1976). | DOI | MR | JFM
[3] Duan, F., Wang, G. P.: Note on the longest paths in {$\{K_{1,4},K_{1,4}+e\}$}-free graphs. Acta Math. Sin., Engl. Ser. 28 (2012), 2501-2506. | DOI | MR | JFM
[4] Li, R.: Hamiltonicity of 2-connected $\{K_{1,4},K_{1,4}+e\}$-free graphs. Discrete Math. 287 (2004), 69-76. | DOI | MR | JFM
[5] Li, R., Schelp, R. H.: Hamiltonicity of {$\{K_{1,4},K_{1,4}+e\}$}-free graphs. Discrete Math. 245 (2002), 195-202. | DOI | MR | JFM
[6] Lin, H., Wang, J.: Hamilton paths in {$\{K_{1,4},K_{1,4}+e\}$}-free graphs. Discrete Math. 308 (2008), 4280-4285. | DOI | MR | JFM
Cité par Sources :