Keywords: Hadamard manifold; Neumann eigenvalue; radial Ricci curvature
@article{10_21136_CMJ_2019_0363_18,
author = {Lu, Wei and Mao, Jing and Wu, Chuanxi},
title = {A universal bound for lower {Neumann} eigenvalues of the {Laplacian}},
journal = {Czechoslovak Mathematical Journal},
pages = {473--482},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0363-18},
mrnumber = {4111854},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/}
}
TY - JOUR AU - Lu, Wei AU - Mao, Jing AU - Wu, Chuanxi TI - A universal bound for lower Neumann eigenvalues of the Laplacian JO - Czechoslovak Mathematical Journal PY - 2020 SP - 473 EP - 482 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/ DO - 10.21136/CMJ.2019.0363-18 LA - en ID - 10_21136_CMJ_2019_0363_18 ER -
%0 Journal Article %A Lu, Wei %A Mao, Jing %A Wu, Chuanxi %T A universal bound for lower Neumann eigenvalues of the Laplacian %J Czechoslovak Mathematical Journal %D 2020 %P 473-482 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/ %R 10.21136/CMJ.2019.0363-18 %G en %F 10_21136_CMJ_2019_0363_18
Lu, Wei; Mao, Jing; Wu, Chuanxi. A universal bound for lower Neumann eigenvalues of the Laplacian. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 473-482. doi: 10.21136/CMJ.2019.0363-18
[1] Ashbaugh, M. S., Benguria, R. D.: Universal bounds for the low eigenvalues of Neumann Laplacians in $n$ dimensions. SIAM J. Math. Anal. 24 (1993), 557-570. | DOI | MR | JFM
[2] Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S., Weidl, T.: Low eigenvalues of Laplace and Schrödinger operators. Oberwolfach Rep. 6 (2009), 355-428. | DOI | MR | JFM
[3] Bandle, C.: Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane. SIAM J. Appl. Math. 22 (1972), 142-147. | DOI | MR | JFM
[4] Bandle, C.: Isoperimetric Inequalities and Applications. Monographs and Studies in Mathematics 7, Pitman, Boston (1980). | MR | JFM
[5] Brouwer, L. E. J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71 (1911), 97-115 German \99999JFM99999 42.0417.01. | DOI | MR
[6] Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115, Academic Press, Orlando (1984). | DOI | MR | JFM
[7] Enache, C., Philippin, G. A.: Some inequalities involving eigenvalues of the Neumann Laplacian. Math. Methods Appl. Sci. 36 (2013), 2145-2153. | DOI | MR | JFM
[8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds. Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. | DOI | MR | JFM
[9] Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom. 83 (2009), 637-662. | DOI | MR | JFM
[10] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel. J. Math. Pures Appl. 101 (2014), 372-393. | DOI | MR | JFM
[11] Spanier, E. H.: Algebraic Topology. McGraw-Hill Series in Higher Mathematics, \hbox{McGraw}-Hill, New York (1966). | DOI | MR | JFM
[12] Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area. J. Ration. Mech. Anal. 3 (1954), 343-356. | DOI | MR | JFM
[13] Weinberger, H. F.: An isoperimetric inequality for the $n$-dimensional free membrane problem. J. Ration. Mech. Anal. 5 (1956), 633-636. | DOI | MR | JFM
[14] Xia, C.: A universal bound for the low eigenvalues of Neumann Laplacians on compact domains in a Hadamard manifold. Monatsh. Math. 128 (1999), 165-171. | DOI | MR | JFM
Cité par Sources :