A universal bound for lower Neumann eigenvalues of the Laplacian
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 473-482.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0$, satisfy $$ \frac {1}{\mu _1}+\frac {1}{\mu _2}+\cdots +\frac {1}{\mu _n}\ge \frac {l^{n+2}}{(n+2)\int _{0}^{l}f^{n-1}(t){\rm d}t}, $$ where $f(t)$ is the solution to $$ \begin {cases} f''(t)+k(t)f(t)=0 \quad \text {on} \ (0,\infty ),\\ f(0)=0, \ f'(0)=1. \end {cases} $$
DOI : 10.21136/CMJ.2019.0363-18
Classification : 35P15, 53C20
Keywords: Hadamard manifold; Neumann eigenvalue; radial Ricci curvature
@article{10_21136_CMJ_2019_0363_18,
     author = {Lu, Wei and Mao, Jing and Wu, Chuanxi},
     title = {A universal bound for lower {Neumann} eigenvalues of the {Laplacian}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {473--482},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2020},
     doi = {10.21136/CMJ.2019.0363-18},
     mrnumber = {4111854},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/}
}
TY  - JOUR
AU  - Lu, Wei
AU  - Mao, Jing
AU  - Wu, Chuanxi
TI  - A universal bound for lower Neumann eigenvalues of the Laplacian
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 473
EP  - 482
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/
DO  - 10.21136/CMJ.2019.0363-18
LA  - en
ID  - 10_21136_CMJ_2019_0363_18
ER  - 
%0 Journal Article
%A Lu, Wei
%A Mao, Jing
%A Wu, Chuanxi
%T A universal bound for lower Neumann eigenvalues of the Laplacian
%J Czechoslovak Mathematical Journal
%D 2020
%P 473-482
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/
%R 10.21136/CMJ.2019.0363-18
%G en
%F 10_21136_CMJ_2019_0363_18
Lu, Wei; Mao, Jing; Wu, Chuanxi. A universal bound for lower Neumann eigenvalues of the Laplacian. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 473-482. doi : 10.21136/CMJ.2019.0363-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/

Cité par Sources :