A universal bound for lower Neumann eigenvalues of the Laplacian
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 473-482
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0$, satisfy $$ \frac {1}{\mu _1}+\frac {1}{\mu _2}+\cdots +\frac {1}{\mu _n}\ge \frac {l^{n+2}}{(n+2)\int _{0}^{l}f^{n-1}(t){\rm d}t}, $$ where $f(t)$ is the solution to $$ \begin {cases} f''(t)+k(t)f(t)=0 \quad \text {on} \ (0,\infty ),\\ f(0)=0, \ f'(0)=1. \end {cases} $$
DOI :
10.21136/CMJ.2019.0363-18
Classification :
35P15, 53C20
Keywords: Hadamard manifold; Neumann eigenvalue; radial Ricci curvature
Keywords: Hadamard manifold; Neumann eigenvalue; radial Ricci curvature
@article{10_21136_CMJ_2019_0363_18,
author = {Lu, Wei and Mao, Jing and Wu, Chuanxi},
title = {A universal bound for lower {Neumann} eigenvalues of the {Laplacian}},
journal = {Czechoslovak Mathematical Journal},
pages = {473--482},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2020},
doi = {10.21136/CMJ.2019.0363-18},
mrnumber = {4111854},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/}
}
TY - JOUR AU - Lu, Wei AU - Mao, Jing AU - Wu, Chuanxi TI - A universal bound for lower Neumann eigenvalues of the Laplacian JO - Czechoslovak Mathematical Journal PY - 2020 SP - 473 EP - 482 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/ DO - 10.21136/CMJ.2019.0363-18 LA - en ID - 10_21136_CMJ_2019_0363_18 ER -
%0 Journal Article %A Lu, Wei %A Mao, Jing %A Wu, Chuanxi %T A universal bound for lower Neumann eigenvalues of the Laplacian %J Czechoslovak Mathematical Journal %D 2020 %P 473-482 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/ %R 10.21136/CMJ.2019.0363-18 %G en %F 10_21136_CMJ_2019_0363_18
Lu, Wei; Mao, Jing; Wu, Chuanxi. A universal bound for lower Neumann eigenvalues of the Laplacian. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 473-482. doi: 10.21136/CMJ.2019.0363-18
Cité par Sources :