A universal bound for lower Neumann eigenvalues of the Laplacian
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 473-482
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0
Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0$, satisfy $$ \frac {1}{\mu _1}+\frac {1}{\mu _2}+\cdots +\frac {1}{\mu _n}\ge \frac {l^{n+2}}{(n+2)\int _{0}^{l}f^{n-1}(t){\rm d}t}, $$ where $f(t)$ is the solution to $$ \begin {cases} f''(t)+k(t)f(t)=0 \quad \text {on} \ (0,\infty ),\\ f(0)=0, \ f'(0)=1. \end {cases} $$
DOI : 10.21136/CMJ.2019.0363-18
Classification : 35P15, 53C20
Keywords: Hadamard manifold; Neumann eigenvalue; radial Ricci curvature
@article{10_21136_CMJ_2019_0363_18,
     author = {Lu, Wei and Mao, Jing and Wu, Chuanxi},
     title = {A universal bound for lower {Neumann} eigenvalues of the {Laplacian}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {473--482},
     year = {2020},
     volume = {70},
     number = {2},
     doi = {10.21136/CMJ.2019.0363-18},
     mrnumber = {4111854},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/}
}
TY  - JOUR
AU  - Lu, Wei
AU  - Mao, Jing
AU  - Wu, Chuanxi
TI  - A universal bound for lower Neumann eigenvalues of the Laplacian
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 473
EP  - 482
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/
DO  - 10.21136/CMJ.2019.0363-18
LA  - en
ID  - 10_21136_CMJ_2019_0363_18
ER  - 
%0 Journal Article
%A Lu, Wei
%A Mao, Jing
%A Wu, Chuanxi
%T A universal bound for lower Neumann eigenvalues of the Laplacian
%J Czechoslovak Mathematical Journal
%D 2020
%P 473-482
%V 70
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0363-18/
%R 10.21136/CMJ.2019.0363-18
%G en
%F 10_21136_CMJ_2019_0363_18
Lu, Wei; Mao, Jing; Wu, Chuanxi. A universal bound for lower Neumann eigenvalues of the Laplacian. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 473-482. doi: 10.21136/CMJ.2019.0363-18

[1] Ashbaugh, M. S., Benguria, R. D.: Universal bounds for the low eigenvalues of Neumann Laplacians in $n$ dimensions. SIAM J. Math. Anal. 24 (1993), 557-570. | DOI | MR | JFM

[2] Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S., Weidl, T.: Low eigenvalues of Laplace and Schrödinger operators. Oberwolfach Rep. 6 (2009), 355-428. | DOI | MR | JFM

[3] Bandle, C.: Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane. SIAM J. Appl. Math. 22 (1972), 142-147. | DOI | MR | JFM

[4] Bandle, C.: Isoperimetric Inequalities and Applications. Monographs and Studies in Mathematics 7, Pitman, Boston (1980). | MR | JFM

[5] Brouwer, L. E. J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71 (1911), 97-115 German \99999JFM99999 42.0417.01. | DOI | MR

[6] Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115, Academic Press, Orlando (1984). | DOI | MR | JFM

[7] Enache, C., Philippin, G. A.: Some inequalities involving eigenvalues of the Neumann Laplacian. Math. Methods Appl. Sci. 36 (2013), 2145-2153. | DOI | MR | JFM

[8] Freitas, P., Mao, J., Salavessa, I.: Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds. Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. | DOI | MR | JFM

[9] Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom. 83 (2009), 637-662. | DOI | MR | JFM

[10] Mao, J.: Eigenvalue inequalities for the $p$-Laplacian on a Riemannian manifold and estimates for the heat kernel. J. Math. Pures Appl. 101 (2014), 372-393. | DOI | MR | JFM

[11] Spanier, E. H.: Algebraic Topology. McGraw-Hill Series in Higher Mathematics, \hbox{McGraw}-Hill, New York (1966). | DOI | MR | JFM

[12] Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area. J. Ration. Mech. Anal. 3 (1954), 343-356. | DOI | MR | JFM

[13] Weinberger, H. F.: An isoperimetric inequality for the $n$-dimensional free membrane problem. J. Ration. Mech. Anal. 5 (1956), 633-636. | DOI | MR | JFM

[14] Xia, C.: A universal bound for the low eigenvalues of Neumann Laplacians on compact domains in a Hadamard manifold. Monatsh. Math. 128 (1999), 165-171. | DOI | MR | JFM

Cité par Sources :