Keywords: elliptic problem; various boundary conditions; gradient discretisation method; Leray-Lions problem
@article{10_21136_CMJ_2019_0312_18,
author = {Droniou, J\'er\^ome and Eymard, Robert and Gallou\"et, Thierry and Herbin, Rapha\`ele},
title = {A unified analysis of elliptic problems with various boundary conditions and their approximation},
journal = {Czechoslovak Mathematical Journal},
pages = {339--368},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0312-18},
mrnumber = {4111847},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0312-18/}
}
TY - JOUR AU - Droniou, Jérôme AU - Eymard, Robert AU - Gallouët, Thierry AU - Herbin, Raphaèle TI - A unified analysis of elliptic problems with various boundary conditions and their approximation JO - Czechoslovak Mathematical Journal PY - 2020 SP - 339 EP - 368 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0312-18/ DO - 10.21136/CMJ.2019.0312-18 LA - en ID - 10_21136_CMJ_2019_0312_18 ER -
%0 Journal Article %A Droniou, Jérôme %A Eymard, Robert %A Gallouët, Thierry %A Herbin, Raphaèle %T A unified analysis of elliptic problems with various boundary conditions and their approximation %J Czechoslovak Mathematical Journal %D 2020 %P 339-368 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0312-18/ %R 10.21136/CMJ.2019.0312-18 %G en %F 10_21136_CMJ_2019_0312_18
Droniou, Jérôme; Eymard, Robert; Gallouët, Thierry; Herbin, Raphaèle. A unified analysis of elliptic problems with various boundary conditions and their approximation. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 339-368. doi: 10.21136/CMJ.2019.0312-18
[1] Andreianov, B., Boyer, F., Hubert, F.: Besov regularity and new error estimates for finite volume approximations of the $p$-Laplacian. Numer. Math. 100 (2005), 565-592. | DOI | MR | JFM
[2] Andreianov, B., Boyer, F., Hubert, F.: On the finite-volume approximation of regular solutions of the $p$-Laplacian. IMA J. Numer. Anal. 26 (2006), 472-502. | DOI | MR | JFM
[3] Andreianov, B., Boyer, F., Hubert, F.: Discrete Besov framework for finite volume approximation of the $p$-Laplacian on non-uniform Cartesian grids. ESAIM Proc. 18 (2007), 1-10. | DOI | MR | JFM
[4] Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equations 23 (2007), 145-195. | DOI | MR | JFM
[5] Antonietti, P. F., Bigoni, N., Verani, M.: Mimetic finite difference approximation of quasilinear elliptic problems. Calcolo 52 (2015), 45-67. | DOI | MR | JFM
[6] Barrett, J. W., Liu., W. B.: Finite element approximation of the $p$-Laplacian. Math. Comput. 61 (1993), 523-537. | DOI | MR | JFM
[7] Barrett, J. W., Liu, W. B.: Finite element approximation of the parabolic $p$-Laplacian. SIAM J. Numer. Anal. 31 (1994), 413-428. | DOI | MR | JFM
[8] Barrett, J. W., Liu, W. B.: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68 (1994), 437-456. | DOI | MR | JFM
[9] Beurling, A., Livingston, A. E.: A theorem on duality mappings in Banach spaces. Ark. Mat. 4 (1962), 405-411. | DOI | MR | JFM
[10] Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. Numer. Math. 134 (2016), 569-609. | DOI | MR | JFM
[11] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011). | DOI | MR | JFM
[12] Browder, F. E.: On a theorem of Beurling and Livingston. Can. J. Math. 17 (1965), 367-372. | DOI | MR | JFM
[13] Browder, F. E., Figueiredo, D. G. de: $J$-monotone nonlinear operators in Banach spaces. Djairo G. de Figueiredo. Selected Papers D. G. Costa Springer, Cham (2013), 1-9. | DOI | MR | JFM
[14] Burman, E., Ern, A.: Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian. C. R. Math. Acad. Sci. Paris 346 (2008), 1013-1016. | DOI | MR | JFM
[15] P. G. Ciarlet, P. Ciarlet, Jr.: Another approach to linearized elasticity and a new proof of Korn's inequality. Math. Models Methods Appl. Sci. 15 (2005), 259-271. | DOI | MR | JFM
[16] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985). | DOI | MR | JFM
[17] Pietro, D. A. Di, Droniou, J.: A hybrid high-order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86 (2017), 2159-2191. | DOI | MR | JFM
[18] Droniou, J.: Finite volume schemes for fully non-linear elliptic equations in divergence form. ESAIM Math. Model. Numer. Anal. 40 (2006), 1069-1100. | DOI | MR | JFM
[19] Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method. Mathematics & Applications 82, Springer, Cham (2018). | DOI | MR | JFM
[20] Eymard, R., Gallouët, T., Herbin, R.: Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids. J. Numer. Math. 17 (2009), 173-193. | DOI | MR | JFM
[21] Eymard, R., Guichard, C.: Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form. Comput. Appl. Math. 37 (2018), 4023-4054. | DOI | MR | JFM
[22] Glazyrina, L. L., Pavlova, M. F.: On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line. Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 158 (2016), 482-499 Russian. | MR
[23] Glowinski, R., Rappaz, J.: Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. M2AN Math. Model. Numer. Anal. 37 (2003), 175-186. | DOI | MR | JFM
[24] Kato, T.: Introduction to the theory of operators in Banach spaces. Perturbation Theory for Linear Operators Classics in Mathematics, Springer, Berlin (1995), 126-188. | DOI | MR | JFM
[25] Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. Fr. 93 (1965), 97-107 French. | DOI | MR | JFM
[26] Lindenstrauss, J.: On nonseparable reflexive Banach spaces. Bull. Am. Math. Soc. 72 (1966), 967-970. | DOI | MR | JFM
[27] Liu, W. B., Barrett, J. W.: A further remark on the regularity of the solutions of the $p$-Laplacian and its applications to their finite element approximation. Nonlinear Anal., Theory Methods Appl. 21 (1993), 379-387. | DOI | MR | JFM
[28] Liu, W. B., Barrett, J. W.: A remark on the regularity of the solutions of the $p$-Laplacian and its application to their finite element approximation. J. Math. Anal. Appl. 178 (1993), 470-487. | DOI | MR | JFM
[29] Minty, G. J.: On a ``monotonicity'' method for the solution of nonlinear equations in Banach spaces. Proc. Natl. Acad. Sci. USA 50 (1963), 1038-1041. | DOI | MR | JFM
Cité par Sources :