Keywords: maximal non $\lambda $-subring; $\lambda $-extension; integrally closed extension; valuation domain
@article{10_21136_CMJ_2019_0298_18,
author = {Kumar, Rahul and Gaur, Atul},
title = {Maximal non $\lambda $-subrings},
journal = {Czechoslovak Mathematical Journal},
pages = {323--337},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0298-18},
mrnumber = {4111846},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/}
}
TY - JOUR AU - Kumar, Rahul AU - Gaur, Atul TI - Maximal non $\lambda $-subrings JO - Czechoslovak Mathematical Journal PY - 2020 SP - 323 EP - 337 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/ DO - 10.21136/CMJ.2019.0298-18 LA - en ID - 10_21136_CMJ_2019_0298_18 ER -
Kumar, Rahul; Gaur, Atul. Maximal non $\lambda $-subrings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 323-337. doi: 10.21136/CMJ.2019.0298-18
[1] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. | DOI | MR | JFM
[2] Azarang, A.: On maximal subrings. Far East J. Math. Sci. 32 (2009), 107-118. | MR | JFM
[3] Azarang, A., Karamzadeh, O. A. S.: On the existence of maximal subrings in commutative Artinian rings. J. Algebra Appl. 9 (2010), 771-778. | DOI | MR | JFM
[4] Azarang, A., Oman, G.: Commutative rings with infinitely many maximal subrings. J. Algebra Appl. 13 (2014), Article ID 1450037, 29 pages. | DOI | MR | JFM
[5] Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. | DOI | MR | JFM
[6] Bastida, E., Gilmer, R.: Overrings and divisorial ideals of rings of the form $D+M$. Mich. Math. J. 20 (1973), 79-95. | DOI | MR | JFM
[7] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings. Houston J. Math. 37 (2011), 47-59. | MR | JFM
[8] Davis, D. E.: Overrings of commutative rings III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. | DOI | MR | JFM
[9] Dobbs, D. E.: On INC-extensions and polynomials with unit content. Can. Math. Bull. 23 (1980), 37-42. | DOI | MR | JFM
[10] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. | DOI | MR | JFM
[11] Dobbs, D. E., Shapiro, J.: Normal pairs with zero-divisors. J. Algebra Appl. 10 (2011), 335-356. | DOI | MR | JFM
[12] E. G. Evans, Jr.: A generalization of Zariski's main theorem. Proc. Am. Math. Soc. 26 (1970), 45-48. | DOI | MR | JFM
[13] Gilbert, M. S.: Extensions of Commutative Rings with Linearly Ordered Intermediate Rings. PhD Thesis. University of Tennessee, Knoxville (1996), Available at https://search.proquest.com/docview/304271872?accountid=8179 | MR
[14] R. W. Gilmer, Jr.: Overrings of Prüfer domains. J. Algebra 4 (1966), 331-340. | DOI | MR | JFM
[15] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. | DOI | MR | JFM
[16] R. W. Gilmer, Jr., J. F. Hoffmann: A characterization of Prüfer domains in terms of polynomials. Pac. J. Math. 60 (1975), 81-85. | DOI | MR | JFM
[17] Jaballah, A.: Maximal non-Prüfer and maximal non-integrally closed subrings of a field. J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. | DOI | MR | JFM
[18] Kaplansky, I.: Commutative Rings. University of Chicago Press, Chicago (1974). | MR | JFM
[19] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings. J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. | DOI | MR | JFM
[20] Papick, I. J.: Topologically defined classes of going-down domains. Trans. Am. Math. Soc. 219 (1976), 1-37. | DOI | MR | JFM
Cité par Sources :