Maximal non $\lambda $-subrings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 323-337
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative ring with unity. The notion of maximal non $\lambda $-subrings is introduced and studied. A ring $R$ is called a maximal non $\lambda $-subring of a ring $T$ if $R\subset T$ is not a $\lambda $-extension, and for any ring $S$ such that $R\subset S\subseteq T$, $S\subseteq T$ is a $\lambda $-extension. We show that a maximal non $\lambda $-subring $R$ of a field has at most two maximal ideals, and exactly two if $R$ is integrally closed in the given field. A determination of when the classical $D + M$ construction is a maximal non $\lambda $-domain is given. A necessary condition is given for decomposable rings to have a field which is a maximal non $\lambda $-subring. If $R$ is a maximal non $\lambda $-subring of a field $K$, where $R$ is integrally closed in $K$, then $K$ is the quotient field of $R$ and $R$ is a Prüfer domain. The equivalence of a maximal non $\lambda $-domain and a maximal non valuation subring of a field is established under some conditions. We also discuss the number of overrings, chains of overrings, and the Krull dimension of maximal non $\lambda $-subrings of a field.
Let $R$ be a commutative ring with unity. The notion of maximal non $\lambda $-subrings is introduced and studied. A ring $R$ is called a maximal non $\lambda $-subring of a ring $T$ if $R\subset T$ is not a $\lambda $-extension, and for any ring $S$ such that $R\subset S\subseteq T$, $S\subseteq T$ is a $\lambda $-extension. We show that a maximal non $\lambda $-subring $R$ of a field has at most two maximal ideals, and exactly two if $R$ is integrally closed in the given field. A determination of when the classical $D + M$ construction is a maximal non $\lambda $-domain is given. A necessary condition is given for decomposable rings to have a field which is a maximal non $\lambda $-subring. If $R$ is a maximal non $\lambda $-subring of a field $K$, where $R$ is integrally closed in $K$, then $K$ is the quotient field of $R$ and $R$ is a Prüfer domain. The equivalence of a maximal non $\lambda $-domain and a maximal non valuation subring of a field is established under some conditions. We also discuss the number of overrings, chains of overrings, and the Krull dimension of maximal non $\lambda $-subrings of a field.
DOI : 10.21136/CMJ.2019.0298-18
Classification : 13A18, 13B02, 13B22
Keywords: maximal non $\lambda $-subring; $\lambda $-extension; integrally closed extension; valuation domain
@article{10_21136_CMJ_2019_0298_18,
     author = {Kumar, Rahul and Gaur, Atul},
     title = {Maximal non $\lambda $-subrings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {323--337},
     year = {2020},
     volume = {70},
     number = {2},
     doi = {10.21136/CMJ.2019.0298-18},
     mrnumber = {4111846},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/}
}
TY  - JOUR
AU  - Kumar, Rahul
AU  - Gaur, Atul
TI  - Maximal non $\lambda $-subrings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 323
EP  - 337
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/
DO  - 10.21136/CMJ.2019.0298-18
LA  - en
ID  - 10_21136_CMJ_2019_0298_18
ER  - 
%0 Journal Article
%A Kumar, Rahul
%A Gaur, Atul
%T Maximal non $\lambda $-subrings
%J Czechoslovak Mathematical Journal
%D 2020
%P 323-337
%V 70
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/
%R 10.21136/CMJ.2019.0298-18
%G en
%F 10_21136_CMJ_2019_0298_18
Kumar, Rahul; Gaur, Atul. Maximal non $\lambda $-subrings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 323-337. doi: 10.21136/CMJ.2019.0298-18

[1] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. | DOI | MR | JFM

[2] Azarang, A.: On maximal subrings. Far East J. Math. Sci. 32 (2009), 107-118. | MR | JFM

[3] Azarang, A., Karamzadeh, O. A. S.: On the existence of maximal subrings in commutative Artinian rings. J. Algebra Appl. 9 (2010), 771-778. | DOI | MR | JFM

[4] Azarang, A., Oman, G.: Commutative rings with infinitely many maximal subrings. J. Algebra Appl. 13 (2014), Article ID 1450037, 29 pages. | DOI | MR | JFM

[5] Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. | DOI | MR | JFM

[6] Bastida, E., Gilmer, R.: Overrings and divisorial ideals of rings of the form $D+M$. Mich. Math. J. 20 (1973), 79-95. | DOI | MR | JFM

[7] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings. Houston J. Math. 37 (2011), 47-59. | MR | JFM

[8] Davis, D. E.: Overrings of commutative rings III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. | DOI | MR | JFM

[9] Dobbs, D. E.: On INC-extensions and polynomials with unit content. Can. Math. Bull. 23 (1980), 37-42. | DOI | MR | JFM

[10] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. | DOI | MR | JFM

[11] Dobbs, D. E., Shapiro, J.: Normal pairs with zero-divisors. J. Algebra Appl. 10 (2011), 335-356. | DOI | MR | JFM

[12] E. G. Evans, Jr.: A generalization of Zariski's main theorem. Proc. Am. Math. Soc. 26 (1970), 45-48. | DOI | MR | JFM

[13] Gilbert, M. S.: Extensions of Commutative Rings with Linearly Ordered Intermediate Rings. PhD Thesis. University of Tennessee, Knoxville (1996), Available at https://search.proquest.com/docview/304271872?accountid=8179 | MR

[14] R. W. Gilmer, Jr.: Overrings of Prüfer domains. J. Algebra 4 (1966), 331-340. | DOI | MR | JFM

[15] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. | DOI | MR | JFM

[16] R. W. Gilmer, Jr., J. F. Hoffmann: A characterization of Prüfer domains in terms of polynomials. Pac. J. Math. 60 (1975), 81-85. | DOI | MR | JFM

[17] Jaballah, A.: Maximal non-Prüfer and maximal non-integrally closed subrings of a field. J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. | DOI | MR | JFM

[18] Kaplansky, I.: Commutative Rings. University of Chicago Press, Chicago (1974). | MR | JFM

[19] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings. J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. | DOI | MR | JFM

[20] Papick, I. J.: Topologically defined classes of going-down domains. Trans. Am. Math. Soc. 219 (1976), 1-37. | DOI | MR | JFM

Cité par Sources :