Maximal non $\lambda $-subrings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 323-337.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative ring with unity. The notion of maximal non $\lambda $-subrings is introduced and studied. A ring $R$ is called a maximal non $\lambda $-subring of a ring $T$ if $R\subset T$ is not a $\lambda $-extension, and for any ring $S$ such that $R\subset S\subseteq T$, $S\subseteq T$ is a $\lambda $-extension. We show that a maximal non $\lambda $-subring $R$ of a field has at most two maximal ideals, and exactly two if $R$ is integrally closed in the given field. A determination of when the classical $D + M$ construction is a maximal non $\lambda $-domain is given. A necessary condition is given for decomposable rings to have a field which is a maximal non $\lambda $-subring. If $R$ is a maximal non $\lambda $-subring of a field $K$, where $R$ is integrally closed in $K$, then $K$ is the quotient field of $R$ and $R$ is a Prüfer domain. The equivalence of a maximal non $\lambda $-domain and a maximal non valuation subring of a field is established under some conditions. We also discuss the number of overrings, chains of overrings, and the Krull dimension of maximal non $\lambda $-subrings of a field.
DOI : 10.21136/CMJ.2019.0298-18
Classification : 13A18, 13B02, 13B22
Keywords: maximal non $\lambda $-subring; $\lambda $-extension; integrally closed extension; valuation domain
@article{10_21136_CMJ_2019_0298_18,
     author = {Kumar, Rahul and Gaur, Atul},
     title = {Maximal non $\lambda $-subrings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {323--337},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2020},
     doi = {10.21136/CMJ.2019.0298-18},
     mrnumber = {4111846},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/}
}
TY  - JOUR
AU  - Kumar, Rahul
AU  - Gaur, Atul
TI  - Maximal non $\lambda $-subrings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 323
EP  - 337
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/
DO  - 10.21136/CMJ.2019.0298-18
LA  - en
ID  - 10_21136_CMJ_2019_0298_18
ER  - 
%0 Journal Article
%A Kumar, Rahul
%A Gaur, Atul
%T Maximal non $\lambda $-subrings
%J Czechoslovak Mathematical Journal
%D 2020
%P 323-337
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/
%R 10.21136/CMJ.2019.0298-18
%G en
%F 10_21136_CMJ_2019_0298_18
Kumar, Rahul; Gaur, Atul. Maximal non $\lambda $-subrings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 323-337. doi : 10.21136/CMJ.2019.0298-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/

Cité par Sources :