Maximal non $\lambda $-subrings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 323-337
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a commutative ring with unity. The notion of maximal non $\lambda $-subrings is introduced and studied. A ring $R$ is called a maximal non $\lambda $-subring of a ring $T$ if $R\subset T$ is not a $\lambda $-extension, and for any ring $S$ such that $R\subset S\subseteq T$, $S\subseteq T$ is a $\lambda $-extension. We show that a maximal non $\lambda $-subring $R$ of a field has at most two maximal ideals, and exactly two if $R$ is integrally closed in the given field. A determination of when the classical $D + M$ construction is a maximal non $\lambda $-domain is given. A necessary condition is given for decomposable rings to have a field which is a maximal non $\lambda $-subring. If $R$ is a maximal non $\lambda $-subring of a field $K$, where $R$ is integrally closed in $K$, then $K$ is the quotient field of $R$ and $R$ is a Prüfer domain. The equivalence of a maximal non $\lambda $-domain and a maximal non valuation subring of a field is established under some conditions. We also discuss the number of overrings, chains of overrings, and the Krull dimension of maximal non $\lambda $-subrings of a field.
DOI :
10.21136/CMJ.2019.0298-18
Classification :
13A18, 13B02, 13B22
Keywords: maximal non $\lambda $-subring; $\lambda $-extension; integrally closed extension; valuation domain
Keywords: maximal non $\lambda $-subring; $\lambda $-extension; integrally closed extension; valuation domain
@article{10_21136_CMJ_2019_0298_18,
author = {Kumar, Rahul and Gaur, Atul},
title = {Maximal non $\lambda $-subrings},
journal = {Czechoslovak Mathematical Journal},
pages = {323--337},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2020},
doi = {10.21136/CMJ.2019.0298-18},
mrnumber = {4111846},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/}
}
TY - JOUR AU - Kumar, Rahul AU - Gaur, Atul TI - Maximal non $\lambda $-subrings JO - Czechoslovak Mathematical Journal PY - 2020 SP - 323 EP - 337 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0298-18/ DO - 10.21136/CMJ.2019.0298-18 LA - en ID - 10_21136_CMJ_2019_0298_18 ER -
Kumar, Rahul; Gaur, Atul. Maximal non $\lambda $-subrings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 323-337. doi: 10.21136/CMJ.2019.0298-18
Cité par Sources :