Keywords: Ferrers matrix; row-dense matrix; discrepancy; linear preserver; strong linear preserver
@article{10_21136_CMJ_2019_0092_18,
author = {Beasley, LeRoy B.},
title = {$(0,1)$-matrices, discrepancy and preservers},
journal = {Czechoslovak Mathematical Journal},
pages = {1123--1131},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0092-18},
mrnumber = {4039626},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0092-18/}
}
TY - JOUR AU - Beasley, LeRoy B. TI - $(0,1)$-matrices, discrepancy and preservers JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1123 EP - 1131 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0092-18/ DO - 10.21136/CMJ.2019.0092-18 LA - en ID - 10_21136_CMJ_2019_0092_18 ER -
Beasley, LeRoy B. $(0,1)$-matrices, discrepancy and preservers. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1123-1131. doi: 10.21136/CMJ.2019.0092-18
[1] Beasley, L. B., Pullman, N. J.: Linear operators preserving properties of graphs. Proc. 20th Southeast Conf. on Combinatorics, Graph Theory, and Computing Congressus Numerantium 70, Utilitas Mathematica Publishing, Winnipeg (1990), 105-112. | MR | JFM
[2] Berger, A.: The isomorphic version of Brualdies nestedness is in P, 2017, 7 pages. Available at | arXiv
[3] Berger, A., Schreck, B.: The isomorphic version of Brualdi's and Sanderson's nestedness. Algorithms (Basel) 10 (2017), Paper No. 74, 12 pages. | DOI | MR | JFM
[4] Brualdi, R. A., Sanderson, G. J.: Nested species subsets, gaps, and discrepancy. Oecologia 119 (1999), 256-264. | DOI
[5] Brualdi, R. A., Shen, J.: Discrepancy of matrices of zeros and ones. Electron. J. Comb. 6 (1999), Research Paper 15, 12 pages. | MR | JFM
[6] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of row-dense matrices. Czech. Math. J. 66 (2016), 847-858. | DOI | MR | JFM
Cité par Sources :