Keywords: distance spectrum; distance characteristic polynomial; $D$-spectrum determined by its $D$-spectrum
@article{10_21136_CMJ_2018_0505_15,
author = {Liu, Ruifang and Xue, Jie},
title = {Graphs with small diameter determined by their $D$-spectra},
journal = {Czechoslovak Mathematical Journal},
pages = {1--17},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2018.0505-15},
mrnumber = {3783582},
zbl = {06861564},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0505-15/}
}
TY - JOUR AU - Liu, Ruifang AU - Xue, Jie TI - Graphs with small diameter determined by their $D$-spectra JO - Czechoslovak Mathematical Journal PY - 2018 SP - 1 EP - 17 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0505-15/ DO - 10.21136/CMJ.2018.0505-15 LA - en ID - 10_21136_CMJ_2018_0505_15 ER -
%0 Journal Article %A Liu, Ruifang %A Xue, Jie %T Graphs with small diameter determined by their $D$-spectra %J Czechoslovak Mathematical Journal %D 2018 %P 1-17 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0505-15/ %R 10.21136/CMJ.2018.0505-15 %G en %F 10_21136_CMJ_2018_0505_15
Liu, Ruifang; Xue, Jie. Graphs with small diameter determined by their $D$-spectra. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 1-17. doi: 10.21136/CMJ.2018.0505-15
[1] Cioabă, S. M., Haemers, W. H., Vermette, J. R., Wong, W.: The graphs with all but two eigenvalues equal to $\pm 1$. J. Algebra Comb. 41 (2015), 887-897. | DOI | MR | JFM
[2] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. J. A. Barth Verlag, Heidelberg (1995). | DOI | MR | JFM
[3] Günthard, H. H., Primas, H.: Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit systemen konjugierter Bindungen. Helv. Chim. Acta 39 (1956), 1645-1653 German. | DOI
[4] Jin, Y.-L., Zhang, X.-D.: Complete multipartite graphs are determined by their distance spectra. Linear Algebra Appl. 448 (2014), 285-291. | DOI | MR | JFM
[5] Lu, L., Huang, Q. X., Huang, X. Y.: The graphs with exactly two distance eigenvalues different from $-1$ and $-3$. J. Algebr. Comb. 45 (2017), 629-647. | DOI | MR | JFM
[6] Lin, H. Q.: On the least distance eigenvalue and its applications on the distance spread. Discrete Math. 338 (2015), 868-874. | DOI | MR | JFM
[7] Lin, H. Q., Hong, Y., Wang, J. F., Shu, J. L.: On the distance spectrum of graphs. Linear Algebra Appl. 439 (2013), 1662-1669. | DOI | MR | JFM
[8] Lin, H. Q., Zhai, M. Q., Gong, S. C.: On graphs with at least three distance eigenvalues less than $-1$. Linear Algebra Appl. 458 (2014), 548-558. | DOI | MR | JFM
[9] Liu, R. F., Xue, J., Guo, L. T.: On the second largest distance eigenvalue of a graph. Linear Multilinear Algebra 65 (2017), 1011-1021. | DOI | MR | JFM
[10] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003), 241-272. | DOI | MR | JFM
[11] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs. Discrete Math. 309 (2009), 576-586. | DOI | MR | JFM
[12] Xue, J., Liu, R. F., Jia, H. C.: On the distance spectrum of trees. Filomat 30 (2016), 1559-1565. | DOI | MR | JFM
Cité par Sources :