On the number of isomorphism classes of derived subgroups
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 665-670.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014).
DOI : 10.21136/CMJ.2018.0464-17
Classification : 20F24
Keywords: derived subgroup; simple group
@article{10_21136_CMJ_2018_0464_17,
     author = {Taghvasani, Leyli Jafari and Marzang, Soran and Zarrin, Mohammad},
     title = {On the number of isomorphism classes of derived subgroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {665--670},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2019},
     doi = {10.21136/CMJ.2018.0464-17},
     mrnumber = {3989273},
     zbl = {07088811},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0464-17/}
}
TY  - JOUR
AU  - Taghvasani, Leyli Jafari
AU  - Marzang, Soran
AU  - Zarrin, Mohammad
TI  - On the number of isomorphism classes of derived subgroups
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 665
EP  - 670
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0464-17/
DO  - 10.21136/CMJ.2018.0464-17
LA  - en
ID  - 10_21136_CMJ_2018_0464_17
ER  - 
%0 Journal Article
%A Taghvasani, Leyli Jafari
%A Marzang, Soran
%A Zarrin, Mohammad
%T On the number of isomorphism classes of derived subgroups
%J Czechoslovak Mathematical Journal
%D 2019
%P 665-670
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0464-17/
%R 10.21136/CMJ.2018.0464-17
%G en
%F 10_21136_CMJ_2018_0464_17
Taghvasani, Leyli Jafari; Marzang, Soran; Zarrin, Mohammad. On the number of isomorphism classes of derived subgroups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 665-670. doi : 10.21136/CMJ.2018.0464-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0464-17/

Cité par Sources :