On the number of isomorphism classes of derived subgroups
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 665-670
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014).
@article{10_21136_CMJ_2018_0464_17,
author = {Taghvasani, Leyli Jafari and Marzang, Soran and Zarrin, Mohammad},
title = {On the number of isomorphism classes of derived subgroups},
journal = {Czechoslovak Mathematical Journal},
pages = {665--670},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2019},
doi = {10.21136/CMJ.2018.0464-17},
mrnumber = {3989273},
zbl = {07088811},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0464-17/}
}
TY - JOUR AU - Taghvasani, Leyli Jafari AU - Marzang, Soran AU - Zarrin, Mohammad TI - On the number of isomorphism classes of derived subgroups JO - Czechoslovak Mathematical Journal PY - 2019 SP - 665 EP - 670 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0464-17/ DO - 10.21136/CMJ.2018.0464-17 LA - en ID - 10_21136_CMJ_2018_0464_17 ER -
%0 Journal Article %A Taghvasani, Leyli Jafari %A Marzang, Soran %A Zarrin, Mohammad %T On the number of isomorphism classes of derived subgroups %J Czechoslovak Mathematical Journal %D 2019 %P 665-670 %V 69 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0464-17/ %R 10.21136/CMJ.2018.0464-17 %G en %F 10_21136_CMJ_2018_0464_17
Taghvasani, Leyli Jafari; Marzang, Soran; Zarrin, Mohammad. On the number of isomorphism classes of derived subgroups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 665-670. doi: 10.21136/CMJ.2018.0464-17
Cité par Sources :