On weak supercyclicity II
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 371-386.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly $l$-sequentially supercyclic, and (iii) weak $l$-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak $l$-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly $l$-sequentially supercyclic operator is quasinilpotent.
DOI : 10.21136/CMJ.2018.0457-16
Classification : 47A16, 47B15
Keywords: supercyclic operator; weakly supercyclic operator; weakly $l$-sequentially supercyclic operator
@article{10_21136_CMJ_2018_0457_16,
     author = {Kubrusly, Carlos S. and Duggal, Bhagwati P.},
     title = {On weak supercyclicity {II}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {371--386},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.21136/CMJ.2018.0457-16},
     mrnumber = {3819179},
     zbl = {06890378},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0457-16/}
}
TY  - JOUR
AU  - Kubrusly, Carlos S.
AU  - Duggal, Bhagwati P.
TI  - On weak supercyclicity II
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 371
EP  - 386
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0457-16/
DO  - 10.21136/CMJ.2018.0457-16
LA  - en
ID  - 10_21136_CMJ_2018_0457_16
ER  - 
%0 Journal Article
%A Kubrusly, Carlos S.
%A Duggal, Bhagwati P.
%T On weak supercyclicity II
%J Czechoslovak Mathematical Journal
%D 2018
%P 371-386
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0457-16/
%R 10.21136/CMJ.2018.0457-16
%G en
%F 10_21136_CMJ_2018_0457_16
Kubrusly, Carlos S.; Duggal, Bhagwati P. On weak supercyclicity II. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 371-386. doi : 10.21136/CMJ.2018.0457-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0457-16/

Cité par Sources :