Keywords: supercyclic operator; weakly supercyclic operator; weakly $l$-sequentially supercyclic operator
@article{10_21136_CMJ_2018_0457_16,
author = {Kubrusly, Carlos S. and Duggal, Bhagwati P.},
title = {On weak supercyclicity {II}},
journal = {Czechoslovak Mathematical Journal},
pages = {371--386},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0457-16},
mrnumber = {3819179},
zbl = {06890378},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0457-16/}
}
TY - JOUR AU - Kubrusly, Carlos S. AU - Duggal, Bhagwati P. TI - On weak supercyclicity II JO - Czechoslovak Mathematical Journal PY - 2018 SP - 371 EP - 386 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0457-16/ DO - 10.21136/CMJ.2018.0457-16 LA - en ID - 10_21136_CMJ_2018_0457_16 ER -
Kubrusly, Carlos S.; Duggal, Bhagwati P. On weak supercyclicity II. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 371-386. doi: 10.21136/CMJ.2018.0457-16
[1] Abramovich, Y. A., Aliprantis, C. D.: An Invitation to Operator Theory. Graduate Studies in Mathematics 50, American Mathematical Society, Providence (2002). | DOI | MR | JFM
[2] Ansari, S. I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148 (1997), 384-390. | DOI | MR | JFM
[3] Ansari, S. I., Bourdon, P. S.: Some properties of cyclic operators. Acta Sci. Math. 63 (1997), 195-207. | MR | JFM
[4] Bayart, F., Matheron, E.: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc., II. Ser. 49 (2006), 1-15. | DOI | MR | JFM
[5] Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). | DOI | MR | JFM
[6] Bès, J., Chan, K. C., Sanders, R.: Every weakly sequentially hypercyclic shift is norm hypercyclic. Math. Proc. R. Ir. Acad. 105A (2005), 79-85. | DOI | MR | JFM
[7] Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37 (2005), 254-264. | DOI | MR | JFM
[8] Bonet, J., Peris, A.: Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal. 159 (1998), 587-595. | DOI | MR | JFM
[9] Bourdon, P. S.: Orbits of hyponormal operators. Mich. Math. J. 44 (1997), 345-353. | DOI | MR | JFM
[10] Conway, J. B.: A Course in Functional Analysis. Graduate Texts in Mathematics 96, Springer, New York (1990). | MR | JFM
[11] Dilworth, S. J., Troitsky, V. G.: Spectrum of a weakly hypercyclic operator meets the unit circle. Trends in Banach Spaces and Operator Theory A Conf. on Trends in Banach Spaces and Operator Theory, Memphis, 2001, Contemp. Math. 321, American Mathematical Society, Providence (2003), 67-69. | DOI | MR | JFM
[12] Duggal, B. P.: Weak supercyclicity: dynamics of paranormal operators. Rend. Circ. Mat. Palermo (2) 65 (2016), 297-306. | DOI | MR | JFM
[13] Duggal, B. P., Kubrusly, C. S., Kim, I. H.: Bishop's property $(\beta)$, a commutativity theorem and the dynamics of class $\Cal A(s,t)$ operators. J. Math. Anal. Appl. 427 (2015), 107-113. | DOI | MR | JFM
[14] Gallardo-Gutiérrez, E. A., Montes-Rodríguez, A.: The Volterra operator is not supercyclic. Integral Equations Oper. Theory 50 (2004), 211-216. | DOI | MR | JFM
[15] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext, Springer, London (2011). | DOI | MR | JFM
[16] Halmos, P. R.: A Hilbert Space Problem Book. Graduate Texts in Mathematics 19, Springer, New York (1982). | DOI | MR | JFM
[17] Herrero, D. A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99 (1991), 179-190. | DOI | MR | JFM
[18] Herzog, G.: On linear operators having supercyclic vectors. Stud. Math. 103 (1992), 295-298. | DOI | MR | JFM
[19] Hilden, H. M., Wallen, L. J.: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23 (1974), 557-565. | DOI | MR | JFM
[20] Kubrusly, C. S.: The Elements of Operator Theory. Birkhäuser, New York (2011). | DOI | MR | JFM
[21] Kubrusly, C. S.: Spectral Theory of Operators on Hilbert Spaces. Birkhäuser, New York (2012). | DOI | MR | JFM
[22] Kubrusly, C. S.: Singular-continuous unitaries and weak dynamics. Math. Proc. R. Ir. Acad. 116A (2016), 45-56. | DOI | MR | JFM
[23] Kubrusly, C. S., Duggal, B. P.: On weak supercyclicity I. Avaible at\\ | arXiv
[24] Megginson, R. E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics 183, Springer, New York (1998). | DOI | MR | JFM
[25] Montes-Rodríguez, A., Shkarin, S. A.: Non-weakly supercyclic operators. J. Oper. Theory 58 (2007), 39-62. | MR | JFM
[26] Peris, A.: Multi-hypercyclic operators are hypercyclic. Math. Z. 236 (2001), 779-786. | DOI | MR | JFM
[27] Salas, H. N.: Supercyclicity and weighted shifts. Stud. Math. 135 (1999), 55-74. | DOI | MR | JFM
[28] Sanders, R.: Weakly supercyclic operators. J. Math. Anal. Appl. 292 (2004), 148-159. | DOI | MR | JFM
[29] Schechter, M.: Principles of Functional Analysis. Graduate Studies in Mathematics 36, American Mathematical Society, Providence (2002). | DOI | MR | JFM
[30] Shkarin, S.: Non-sequential weak supercyclicity and hypercyclicity. J. Funct. Anal. 242 (2007), 37-77. | DOI | MR | JFM
Cité par Sources :