$L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 195-217
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.
We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.
DOI :
10.21136/CMJ.2018.0415-16
Classification :
53C42, 53C50
Keywords: weighted Poincaré inequality; $\delta $-stability; $L^{p}$ harmonic $1$-form; property $(\mathcal {P}_\rho )$
Keywords: weighted Poincaré inequality; $\delta $-stability; $L^{p}$ harmonic $1$-form; property $(\mathcal {P}_\rho )$
@article{10_21136_CMJ_2018_0415_16,
author = {Chao, Xiaoli and Lv, Yusha},
title = {$L^p$ harmonic $1$-form on submanifold with weighted {Poincar\'e} inequality},
journal = {Czechoslovak Mathematical Journal},
pages = {195--217},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2018.0415-16},
mrnumber = {3783593},
zbl = {06861575},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/}
}
TY - JOUR AU - Chao, Xiaoli AU - Lv, Yusha TI - $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality JO - Czechoslovak Mathematical Journal PY - 2018 SP - 195 EP - 217 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/ DO - 10.21136/CMJ.2018.0415-16 LA - en ID - 10_21136_CMJ_2018_0415_16 ER -
%0 Journal Article %A Chao, Xiaoli %A Lv, Yusha %T $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality %J Czechoslovak Mathematical Journal %D 2018 %P 195-217 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/ %R 10.21136/CMJ.2018.0415-16 %G en %F 10_21136_CMJ_2018_0415_16
Chao, Xiaoli; Lv, Yusha. $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 195-217. doi: 10.21136/CMJ.2018.0415-16
Cité par Sources :