$L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 195-217.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.
DOI : 10.21136/CMJ.2018.0415-16
Classification : 53C42, 53C50
Keywords: weighted Poincaré inequality; $\delta $-stability; $L^{p}$ harmonic $1$-form; property $(\mathcal {P}_\rho )$
@article{10_21136_CMJ_2018_0415_16,
     author = {Chao, Xiaoli and Lv, Yusha},
     title = {$L^p$ harmonic $1$-form on submanifold with weighted {Poincar\'e} inequality},
     journal = {Czechoslovak Mathematical Journal},
     pages = {195--217},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2018},
     doi = {10.21136/CMJ.2018.0415-16},
     mrnumber = {3783593},
     zbl = {06861575},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/}
}
TY  - JOUR
AU  - Chao, Xiaoli
AU  - Lv, Yusha
TI  - $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 195
EP  - 217
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/
DO  - 10.21136/CMJ.2018.0415-16
LA  - en
ID  - 10_21136_CMJ_2018_0415_16
ER  - 
%0 Journal Article
%A Chao, Xiaoli
%A Lv, Yusha
%T $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality
%J Czechoslovak Mathematical Journal
%D 2018
%P 195-217
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/
%R 10.21136/CMJ.2018.0415-16
%G en
%F 10_21136_CMJ_2018_0415_16
Chao, Xiaoli; Lv, Yusha. $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 195-217. doi : 10.21136/CMJ.2018.0415-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/

Cité par Sources :