$L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 195-217
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.
We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.
DOI : 10.21136/CMJ.2018.0415-16
Classification : 53C42, 53C50
Keywords: weighted Poincaré inequality; $\delta $-stability; $L^{p}$ harmonic $1$-form; property $(\mathcal {P}_\rho )$
@article{10_21136_CMJ_2018_0415_16,
     author = {Chao, Xiaoli and Lv, Yusha},
     title = {$L^p$ harmonic $1$-form on submanifold with weighted {Poincar\'e} inequality},
     journal = {Czechoslovak Mathematical Journal},
     pages = {195--217},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2018.0415-16},
     mrnumber = {3783593},
     zbl = {06861575},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/}
}
TY  - JOUR
AU  - Chao, Xiaoli
AU  - Lv, Yusha
TI  - $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 195
EP  - 217
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/
DO  - 10.21136/CMJ.2018.0415-16
LA  - en
ID  - 10_21136_CMJ_2018_0415_16
ER  - 
%0 Journal Article
%A Chao, Xiaoli
%A Lv, Yusha
%T $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality
%J Czechoslovak Mathematical Journal
%D 2018
%P 195-217
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0415-16/
%R 10.21136/CMJ.2018.0415-16
%G en
%F 10_21136_CMJ_2018_0415_16
Chao, Xiaoli; Lv, Yusha. $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 195-217. doi: 10.21136/CMJ.2018.0415-16

[1] Calderbank, D. M. J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173 (2000), 214-255. | DOI | MR | JFM

[2] Carron, G.: $L^2$-cohomologie et inégalités de Sobolev. Math. Ann. 314 (1999), 613-639 French. | DOI | MR | JFM

[3] Cavalcante, M. P., Mirandola, H., Vitório, F.: $L^2$ harmonic $1$-forms on submanifolds with finite total curvature. J. Geom. Anal. 24 (2014), 205-222. | DOI | MR | JFM

[4] Chao, X., Lv, Y.: $L^2$ harmonic $1$-forms on submanifolds with weighted Poincaré inequality. J. Korean Math. Soc. 53 (2016), 583-595. | DOI | MR | JFM

[5] Dung, N. T., Seo, K.: Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature. Ann. Global Anal. Geom. 41 (2012), 447-460. | DOI | MR | JFM

[6] Dung, N. T., Seo, K.: Vanishing theorems for $L^2$ harmonic $1$-forms on complete submanifolds in a Riemannian manifold. J. Math. Anal. Appl. 423 (2015), 1594-1609. | DOI | MR | JFM

[7] Fu, H.-P., Li, Z.-Q.: $L^2$ harmonic $1$-forms on complete submanifolds in Euclidean space. Kodai Math. J. 32 (2009), 432-441. | DOI | MR | JFM

[8] Greene, R. E., Wu, H.: Integrals of subharmonic functions on manifolds of nonnegative curvature. Invent. Math. 27 (1974), 265-298. | DOI | MR | JFM

[9] Greene, R. E., Wu, H.: Harmonic forms on noncompact Riemannian and Kähler manifolds. Mich. Math. J. 28 (1981), 63-81. | DOI | MR | JFM

[10] Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Commun. Pure Appl. Math. 27 (1974), 715-727. | DOI | MR | JFM

[11] Kawai, S.: Operator $\triangle-aK$ on surfaces. Hokkaido Math. J. 17 (1988), 147-150. | DOI | MR | JFM

[12] Lam, K.-H.: Results on a weighted Poincaré inequality of complete manifolds. Trans. Am. Math. Soc. 362 (2010), 5043-5062. | DOI | MR | JFM

[13] Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics 134, Cambridge University Press, Cambridge (2012). | DOI | MR | JFM

[14] Li, P., Schoen, R.: $L^p$ and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153 (1984), 279-301. | DOI | MR | JFM

[15] Li, P., Wang, J.: Complete manifolds with positive spectrum. J. Differ. Geom. 58 (2001), 501-534. | DOI | MR | JFM

[16] Miyaoka, R.: $L^2$ harmonic $1$-forms on a complete stable minimal hypersurface. Geometry and Global Analysis T. Kotake et al. Int. Research Inst., Sendai 1993, Tôhoku Univ., Mathematical Institute (1993), 289-293. | MR | JFM

[17] Palmer, B.: Stability of minimal hypersurfaces. Comment. Math. Helv. 66 (1991), 185-188. | DOI | MR | JFM

[18] Sang, N. D., Thanh, N. T.: Stable minimal hypersurfaces with weighted Poincaré inequality in a Riemannian manifold. Commum. Korean. Math. Soc. 29 (2014), 123-130. | DOI | MR | JFM

[19] Seo, K.: $L^2$ harmonic $1$-forms on minimal submanifolds in hyperbolic space. J. Math. Anal. Appl. 371 (2010), 546-551. | DOI | MR | JFM

[20] Seo, K.: Rigidity of minimal submanifolds in hyperbolic space. Arch. Math. 94 (2010), 173-181. | DOI | MR | JFM

[21] Seo, K.: $L^p$ harmonic $1$-forms and first eigenvalue of a stable minimal hypersurface. Pac. J. Math. 268 (2014), 205-229. | DOI | MR | JFM

[22] Shiohama, K., Xu, H.: The topological sphere theorem for complete submanifolds. Compos. Math. 107 (1997), 221-232. | DOI | MR | JFM

[23] Tam, L.-F., Zhou, D.: Stability properties for the higher dimensional catenoid in $\mathbb{R}^{n+1}$. Proc. Am. Math. Soc. 137 (2009), 3451-3461. | DOI | MR | JFM

[24] Vieira, M.: Vanishing theorems for $L^2$ harmonic forms on complete Riemannian manifolds. Geom. Dedicata 184 (2016), 175-191. | DOI | MR | JFM

[25] Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25 (1976), 659-670 erratum ibid. 31 1982 607. | DOI | MR | JFM

[26] Yun, G.: Total scalar curvature and $L^2$ harmonic $1$-forms on a minimal hypersurface in Euclidean space. Geom. Dedicata. 89 (2002), 135-141. | DOI | MR | JFM

Cité par Sources :