Keywords: Diophantine inequalities; Davenport-Heilbronn method; prime
@article{10_21136_CMJ_2018_0316_17,
author = {Mu, Quanwu and Zhu, Minhui and Li, Ping},
title = {A {Diophantine} inequality with four squares and one $k$th power of primes},
journal = {Czechoslovak Mathematical Journal},
pages = {353--363},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0316-17},
mrnumber = {3959949},
zbl = {07088789},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/}
}
TY - JOUR AU - Mu, Quanwu AU - Zhu, Minhui AU - Li, Ping TI - A Diophantine inequality with four squares and one $k$th power of primes JO - Czechoslovak Mathematical Journal PY - 2019 SP - 353 EP - 363 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/ DO - 10.21136/CMJ.2018.0316-17 LA - en ID - 10_21136_CMJ_2018_0316_17 ER -
%0 Journal Article %A Mu, Quanwu %A Zhu, Minhui %A Li, Ping %T A Diophantine inequality with four squares and one $k$th power of primes %J Czechoslovak Mathematical Journal %D 2019 %P 353-363 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/ %R 10.21136/CMJ.2018.0316-17 %G en %F 10_21136_CMJ_2018_0316_17
Mu, Quanwu; Zhu, Minhui; Li, Ping. A Diophantine inequality with four squares and one $k$th power of primes. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 353-363. doi: 10.21136/CMJ.2018.0316-17
[1] Baker, A.: On some diophantine inequalities involving primes. J. Reine Angew. Math. 228 (1967), 166-181. | DOI | MR | JFM
[2] Baker, R. C., Harman, G.: Diophantine approximation by prime numbers. J. Lond. Math. Soc., II. Ser. 25 (1982), 201-215. | DOI | MR | JFM
[3] Bourgain, J.: On the Vinogradov mean value. Proc. Steklov Inst. Math. 296 (2017), 30-40 translated from Tr. Mat. Inst. Steklova 296 2017 36-46. | DOI | MR | JFM
[4] Cook, R. J.: The value of additive forms at prime arguments. J. Théor. Nombres Bordx. 13 (2001), 77-91. | DOI | MR | JFM
[5] Davenport, H., Heilbronn, H.: On indefinite quadratic forms in five variables. J. Lond. Math. Soc. 21 (1946), 185-193. | DOI | MR | JFM
[6] Ge, W., Wang, T.: On Diophantine problems with mixed powers of primes. Acta Arith. 182 (2018), 183-199. | DOI | MR | JFM
[7] Harman, G.: Trigonometric sums over primes I. Mathematika 28 (1981), 249-254. | DOI | MR | JFM
[8] Harman, G.: Diophantine approximation by prime numbers. J. Lond. Math. Soc., II. Ser. 44 (1991), 218-226. | DOI | MR | JFM
[9] Harman, G.: The values of ternary quadratic forms at prime arguments. Mathematika 51 (2004), 83-96. | DOI | MR | JFM
[10] Heath-Brown, D. R.: Weyl's inequality, Hua's inequality, and Waring's problem. J. Lond. Math. Soc., II. Ser. 38 (1988), 216-230. | DOI | MR | JFM
[11] Hua, L.-K.: Some results in additive prime-number theory. Q. J. Math., Oxf. Ser. 9 (1938), 68-80. | DOI | MR | JFM
[12] Languasco, A., Zaccagnini, A.: A Diophantine problem with a prime and three squares of primes. J. Number Theory 132 (2012), 3016-3028. | DOI | MR | JFM
[13] Languasco, A., Zaccagnini, A.: A Diophantine problem with prime variables. Highly Composite: Papers in Number Theory V. Kumar Murty, R. Thangadurai Ramanujan Mathematical Society Lecture Notes Series 23, Ramanujan Mathematical Society, Mysore (2016), 157-168. | MR | JFM
[14] Li, W., Wang, T.: Diophantine approximation with four squares and one $k$-th power of primes. J. Math. Sci. Adv. Appl. 6 (2010), 1-16. | MR | JFM
[15] Li, W., Wang, T.: Diophantine approximation with two primes and one square of prime. Chin. Q. J. Math. 27 (2012), 417-423. | JFM
[16] Matomäki, K.: Diophantine approximation by primes. Glasg. Math. J. 52 (2010), 87-106. | DOI | MR | JFM
[17] Mu, Q.: Diophantine approximation with four squares and one $k$th power of primes. Ramanujan J. 39 (2016), 481-496. | DOI | MR | JFM
[18] Mu, Q.: One Diophantine inequality with unlike powers of prime variables. Int. J. Number Theory 13 (2017), 1531-1545. | DOI | MR | JFM
[19] Mu, Q., Qu, Y.: A Diophantine inequality with prime variables and mixed power. Acta Math. Sin., Chin. Ser. 58 (2015), 491-500 Chinese. | MR | JFM
[20] Ramachandra, K.: On the sums $\sum\nolimits_{j=1}^K\lambda_jf_j(p_j)$. J. Reine Angew. Math. 262/263 (1973), 158-165. | DOI | MR | JFM
[21] Vaughan, R. C.: Diophantine approximation by prime numbers. I. Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. | DOI | MR | JFM
[22] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125, Cambridge University Press, Cambridge (1997). | DOI | MR | JFM
[23] Vinogradov, I. M.: Representation of an odd number as a sum of three primes. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 15 (1937), 169-172. | JFM
Cité par Sources :