A Diophantine inequality with four squares and one $k$th power of primes
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 353-363 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $k\geq 5$ be an odd integer and $\eta $ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu $ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma $ with $0\sigma 1/(8\vartheta (k))$, the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+ \eta |\Bigl (\max _{1\leq j\leq 5} p_j\Bigr )^{-\sigma } $$ has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^{(k-5)/2}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\geq 11$. This improves a recent result in W. Ge, T. Wang (2018).
Let $k\geq 5$ be an odd integer and $\eta $ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu $ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma $ with $0\sigma 1/(8\vartheta (k))$, the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+ \eta |\Bigl (\max _{1\leq j\leq 5} p_j\Bigr )^{-\sigma } $$ has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^{(k-5)/2}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\geq 11$. This improves a recent result in W. Ge, T. Wang (2018).
DOI : 10.21136/CMJ.2018.0316-17
Classification : 11D75, 11P55
Keywords: Diophantine inequalities; Davenport-Heilbronn method; prime
@article{10_21136_CMJ_2018_0316_17,
     author = {Mu, Quanwu and Zhu, Minhui and Li, Ping},
     title = {A {Diophantine} inequality with four squares and one $k$th power of primes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {353--363},
     year = {2019},
     volume = {69},
     number = {2},
     doi = {10.21136/CMJ.2018.0316-17},
     mrnumber = {3959949},
     zbl = {07088789},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/}
}
TY  - JOUR
AU  - Mu, Quanwu
AU  - Zhu, Minhui
AU  - Li, Ping
TI  - A Diophantine inequality with four squares and one $k$th power of primes
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 353
EP  - 363
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/
DO  - 10.21136/CMJ.2018.0316-17
LA  - en
ID  - 10_21136_CMJ_2018_0316_17
ER  - 
%0 Journal Article
%A Mu, Quanwu
%A Zhu, Minhui
%A Li, Ping
%T A Diophantine inequality with four squares and one $k$th power of primes
%J Czechoslovak Mathematical Journal
%D 2019
%P 353-363
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/
%R 10.21136/CMJ.2018.0316-17
%G en
%F 10_21136_CMJ_2018_0316_17
Mu, Quanwu; Zhu, Minhui; Li, Ping. A Diophantine inequality with four squares and one $k$th power of primes. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 353-363. doi: 10.21136/CMJ.2018.0316-17

[1] Baker, A.: On some diophantine inequalities involving primes. J. Reine Angew. Math. 228 (1967), 166-181. | DOI | MR | JFM

[2] Baker, R. C., Harman, G.: Diophantine approximation by prime numbers. J. Lond. Math. Soc., II. Ser. 25 (1982), 201-215. | DOI | MR | JFM

[3] Bourgain, J.: On the Vinogradov mean value. Proc. Steklov Inst. Math. 296 (2017), 30-40 translated from Tr. Mat. Inst. Steklova 296 2017 36-46. | DOI | MR | JFM

[4] Cook, R. J.: The value of additive forms at prime arguments. J. Théor. Nombres Bordx. 13 (2001), 77-91. | DOI | MR | JFM

[5] Davenport, H., Heilbronn, H.: On indefinite quadratic forms in five variables. J. Lond. Math. Soc. 21 (1946), 185-193. | DOI | MR | JFM

[6] Ge, W., Wang, T.: On Diophantine problems with mixed powers of primes. Acta Arith. 182 (2018), 183-199. | DOI | MR | JFM

[7] Harman, G.: Trigonometric sums over primes I. Mathematika 28 (1981), 249-254. | DOI | MR | JFM

[8] Harman, G.: Diophantine approximation by prime numbers. J. Lond. Math. Soc., II. Ser. 44 (1991), 218-226. | DOI | MR | JFM

[9] Harman, G.: The values of ternary quadratic forms at prime arguments. Mathematika 51 (2004), 83-96. | DOI | MR | JFM

[10] Heath-Brown, D. R.: Weyl's inequality, Hua's inequality, and Waring's problem. J. Lond. Math. Soc., II. Ser. 38 (1988), 216-230. | DOI | MR | JFM

[11] Hua, L.-K.: Some results in additive prime-number theory. Q. J. Math., Oxf. Ser. 9 (1938), 68-80. | DOI | MR | JFM

[12] Languasco, A., Zaccagnini, A.: A Diophantine problem with a prime and three squares of primes. J. Number Theory 132 (2012), 3016-3028. | DOI | MR | JFM

[13] Languasco, A., Zaccagnini, A.: A Diophantine problem with prime variables. Highly Composite: Papers in Number Theory V. Kumar Murty, R. Thangadurai Ramanujan Mathematical Society Lecture Notes Series 23, Ramanujan Mathematical Society, Mysore (2016), 157-168. | MR | JFM

[14] Li, W., Wang, T.: Diophantine approximation with four squares and one $k$-th power of primes. J. Math. Sci. Adv. Appl. 6 (2010), 1-16. | MR | JFM

[15] Li, W., Wang, T.: Diophantine approximation with two primes and one square of prime. Chin. Q. J. Math. 27 (2012), 417-423. | JFM

[16] Matomäki, K.: Diophantine approximation by primes. Glasg. Math. J. 52 (2010), 87-106. | DOI | MR | JFM

[17] Mu, Q.: Diophantine approximation with four squares and one $k$th power of primes. Ramanujan J. 39 (2016), 481-496. | DOI | MR | JFM

[18] Mu, Q.: One Diophantine inequality with unlike powers of prime variables. Int. J. Number Theory 13 (2017), 1531-1545. | DOI | MR | JFM

[19] Mu, Q., Qu, Y.: A Diophantine inequality with prime variables and mixed power. Acta Math. Sin., Chin. Ser. 58 (2015), 491-500 Chinese. | MR | JFM

[20] Ramachandra, K.: On the sums $\sum\nolimits_{j=1}^K\lambda_jf_j(p_j)$. J. Reine Angew. Math. 262/263 (1973), 158-165. | DOI | MR | JFM

[21] Vaughan, R. C.: Diophantine approximation by prime numbers. I. Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. | DOI | MR | JFM

[22] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125, Cambridge University Press, Cambridge (1997). | DOI | MR | JFM

[23] Vinogradov, I. M.: Representation of an odd number as a sum of three primes. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 15 (1937), 169-172. | JFM

Cité par Sources :