A Diophantine inequality with four squares and one $k$th power of primes
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 353-363.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $k\geq 5$ be an odd integer and $\eta $ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu $ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma $ with $0\sigma 1/(8\vartheta (k))$, the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+ \eta |\Bigl (\max _{1\leq j\leq 5} p_j\Bigr )^{-\sigma } $$ has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^{(k-5)/2}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\geq 11$. This improves a recent result in W. Ge, T. Wang (2018).
DOI : 10.21136/CMJ.2018.0316-17
Classification : 11D75, 11P55
Keywords: Diophantine inequalities; Davenport-Heilbronn method; prime
@article{10_21136_CMJ_2018_0316_17,
     author = {Mu, Quanwu and Zhu, Minhui and Li, Ping},
     title = {A {Diophantine} inequality with four squares and one $k$th power of primes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {353--363},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.21136/CMJ.2018.0316-17},
     mrnumber = {3959949},
     zbl = {07088789},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/}
}
TY  - JOUR
AU  - Mu, Quanwu
AU  - Zhu, Minhui
AU  - Li, Ping
TI  - A Diophantine inequality with four squares and one $k$th power of primes
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 353
EP  - 363
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/
DO  - 10.21136/CMJ.2018.0316-17
LA  - en
ID  - 10_21136_CMJ_2018_0316_17
ER  - 
%0 Journal Article
%A Mu, Quanwu
%A Zhu, Minhui
%A Li, Ping
%T A Diophantine inequality with four squares and one $k$th power of primes
%J Czechoslovak Mathematical Journal
%D 2019
%P 353-363
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/
%R 10.21136/CMJ.2018.0316-17
%G en
%F 10_21136_CMJ_2018_0316_17
Mu, Quanwu; Zhu, Minhui; Li, Ping. A Diophantine inequality with four squares and one $k$th power of primes. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 353-363. doi : 10.21136/CMJ.2018.0316-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/

Cité par Sources :