A Diophantine inequality with four squares and one $k$th power of primes
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 353-363
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $k\geq 5$ be an odd integer and $\eta $ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu $ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma $ with $0\sigma 1/(8\vartheta (k))$, the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+ \eta |\Bigl (\max _{1\leq j\leq 5} p_j\Bigr )^{-\sigma } $$ has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^{(k-5)/2}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\geq 11$. This improves a recent result in W. Ge, T. Wang (2018).
DOI :
10.21136/CMJ.2018.0316-17
Classification :
11D75, 11P55
Keywords: Diophantine inequalities; Davenport-Heilbronn method; prime
Keywords: Diophantine inequalities; Davenport-Heilbronn method; prime
@article{10_21136_CMJ_2018_0316_17,
author = {Mu, Quanwu and Zhu, Minhui and Li, Ping},
title = {A {Diophantine} inequality with four squares and one $k$th power of primes},
journal = {Czechoslovak Mathematical Journal},
pages = {353--363},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2019},
doi = {10.21136/CMJ.2018.0316-17},
mrnumber = {3959949},
zbl = {07088789},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/}
}
TY - JOUR AU - Mu, Quanwu AU - Zhu, Minhui AU - Li, Ping TI - A Diophantine inequality with four squares and one $k$th power of primes JO - Czechoslovak Mathematical Journal PY - 2019 SP - 353 EP - 363 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/ DO - 10.21136/CMJ.2018.0316-17 LA - en ID - 10_21136_CMJ_2018_0316_17 ER -
%0 Journal Article %A Mu, Quanwu %A Zhu, Minhui %A Li, Ping %T A Diophantine inequality with four squares and one $k$th power of primes %J Czechoslovak Mathematical Journal %D 2019 %P 353-363 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0316-17/ %R 10.21136/CMJ.2018.0316-17 %G en %F 10_21136_CMJ_2018_0316_17
Mu, Quanwu; Zhu, Minhui; Li, Ping. A Diophantine inequality with four squares and one $k$th power of primes. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 353-363. doi: 10.21136/CMJ.2018.0316-17
Cité par Sources :