On the exponential diophantine equation $x^y+y^x=z^z$
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 645-653
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \pmod D$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \{x,y,z\}480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.
For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \pmod D$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \{x,y,z\}480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.
DOI :
10.21136/CMJ.2017.0645-15
Classification :
11D61
Keywords: exponential diophantine equation; upper bound for solutions; singular number
Keywords: exponential diophantine equation; upper bound for solutions; singular number
@article{10_21136_CMJ_2017_0645_15,
author = {Du, Xiaoying},
title = {On the exponential diophantine equation $x^y+y^x=z^z$},
journal = {Czechoslovak Mathematical Journal},
pages = {645--653},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0645-15},
mrnumber = {3697908},
zbl = {06770122},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/}
}
TY - JOUR AU - Du, Xiaoying TI - On the exponential diophantine equation $x^y+y^x=z^z$ JO - Czechoslovak Mathematical Journal PY - 2017 SP - 645 EP - 653 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/ DO - 10.21136/CMJ.2017.0645-15 LA - en ID - 10_21136_CMJ_2017_0645_15 ER -
Du, Xiaoying. On the exponential diophantine equation $x^y+y^x=z^z$. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 645-653. doi: 10.21136/CMJ.2017.0645-15
Cité par Sources :