On the exponential diophantine equation $x^y+y^x=z^z$
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 645-653.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \pmod D$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \{x,y,z\}480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.
DOI : 10.21136/CMJ.2017.0645-15
Classification : 11D61
Keywords: exponential diophantine equation; upper bound for solutions; singular number
@article{10_21136_CMJ_2017_0645_15,
     author = {Du, Xiaoying},
     title = {On the exponential diophantine equation $x^y+y^x=z^z$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {645--653},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2017},
     doi = {10.21136/CMJ.2017.0645-15},
     mrnumber = {3697908},
     zbl = {06770122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/}
}
TY  - JOUR
AU  - Du, Xiaoying
TI  - On the exponential diophantine equation $x^y+y^x=z^z$
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 645
EP  - 653
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/
DO  - 10.21136/CMJ.2017.0645-15
LA  - en
ID  - 10_21136_CMJ_2017_0645_15
ER  - 
%0 Journal Article
%A Du, Xiaoying
%T On the exponential diophantine equation $x^y+y^x=z^z$
%J Czechoslovak Mathematical Journal
%D 2017
%P 645-653
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/
%R 10.21136/CMJ.2017.0645-15
%G en
%F 10_21136_CMJ_2017_0645_15
Du, Xiaoying. On the exponential diophantine equation $x^y+y^x=z^z$. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 645-653. doi : 10.21136/CMJ.2017.0645-15. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/

Cité par Sources :