Keywords: exponential diophantine equation; upper bound for solutions; singular number
@article{10_21136_CMJ_2017_0645_15,
author = {Du, Xiaoying},
title = {On the exponential diophantine equation $x^y+y^x=z^z$},
journal = {Czechoslovak Mathematical Journal},
pages = {645--653},
year = {2017},
volume = {67},
number = {3},
doi = {10.21136/CMJ.2017.0645-15},
mrnumber = {3697908},
zbl = {06770122},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/}
}
TY - JOUR AU - Du, Xiaoying TI - On the exponential diophantine equation $x^y+y^x=z^z$ JO - Czechoslovak Mathematical Journal PY - 2017 SP - 645 EP - 653 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/ DO - 10.21136/CMJ.2017.0645-15 LA - en ID - 10_21136_CMJ_2017_0645_15 ER -
Du, Xiaoying. On the exponential diophantine equation $x^y+y^x=z^z$. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 645-653. doi: 10.21136/CMJ.2017.0645-15
[1] Bilu, Y., Hanrot, G., Voutier, P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75-122. | DOI | MR | JFM
[2] Birkhoff, G. D., Vandiver, H. S.: On the integral divisors of $a^n-b^n$. Ann. of Math. (2) 5 (1904), 173-180. | DOI | MR | JFM
[3] Buell, D. A.: Computer computation of class groups of quadratic number fields. Congr. Numerantium 22 Conf. Proc. Numerical Mathematics and Computing, Winnipeg 1978 (1979), 3-12 McCarthy et al. | MR | JFM
[4] Bugeaud, Y.: Linear forms in $p$-adic logarithms and the Diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. | DOI | MR | JFM
[5] Deng, Y., Zhang, W.: On the odd prime solutions of the Diophantine equation $x^y+y^x=z^z$. Abstr. Appl. Anal. 2014 (2014), Art. ID 186416, 4 pages. | DOI | MR
[6] Le, M.: Some exponential Diophantine equations. I: The equation $D_1x^2-D_2y^2=\lambda k^z$. J. Number Theory 55 (1995), 209-221. | DOI | MR | JFM
[7] Le, M.: On the Diophantine equation $y^x-x^y=z^2$. Rocky Mt. J. Math. (2007), 37 1181-1185. | DOI | MR | JFM
[8] Liu, Y. N., Guo, X. Y.: A Diophantine equation and its integer solutions. Acta Math. Sin., Chin. Ser. 53 (2010), 853-856. | MR | JFM
[9] Luca, F., Mignotte, M.: On the equation $y^x\pm x^y=z^2$. Rocky Mt. J. Math. 30 (2000), 651-661. | DOI | MR | JFM
[10] Mollin, R. A., Williams, H. C.: Computation of the class number of a real quadratic field. Util. Math. 41 (1992), 259-308. | MR | JFM
[11] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30, Academic Press, London (1969). | MR | JFM
[12] Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C.: Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100000000000. Math. Comput. 70 (2001), 70 1311-1328 corrig. ibid. 72 521-523 2003. | DOI | MR | JFM
[13] Wu, H.: The application of BHV theorem to the Diophantine equation $x^y+y^x=z^z$. Acta Math. Sin., Chin. Ser. 58 (2015), 679-684. | MR | JFM
[14] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y-y^x=c^z$. Colloq. Math. 128 (2012), 277-285. | DOI | MR | JFM
[15] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y+y^x=z^z$. Chin. Ann. Math., Ser. A (2013), 34A 279-284. | MR | JFM
[16] Zhang, Z., Yuan, P.: On the Diophantine equation $ax^y+by^z+cz^x=0$. Int. J. Number Theory 8 (2012), 813-821. | DOI | MR | JFM
Cité par Sources :