On the exponential diophantine equation $x^y+y^x=z^z$
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 645-653 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \pmod D$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \{x,y,z\}480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.
For any positive integer $D$ which is not a square, let $(u_1,v_1)$ be the least positive integer solution of the Pell equation $u^2-Dv^2=1,$ and let $h(4D)$ denote the class number of binary quadratic primitive forms of discriminant $4D$. If $D$ satisfies $2\nmid D$ and $v_1h(4D)\equiv 0 \pmod D$, then $D$ is called a singular number. In this paper, we prove that if $(x,y,z)$ is a positive integer solution of the equation $x^y+y^x=z^z$ with $2\mid z$, then maximum $\max \{x,y,z\}480000$ and both $x$, $y$ are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions $(x,y,z)$.
DOI : 10.21136/CMJ.2017.0645-15
Classification : 11D61
Keywords: exponential diophantine equation; upper bound for solutions; singular number
@article{10_21136_CMJ_2017_0645_15,
     author = {Du, Xiaoying},
     title = {On the exponential diophantine equation $x^y+y^x=z^z$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {645--653},
     year = {2017},
     volume = {67},
     number = {3},
     doi = {10.21136/CMJ.2017.0645-15},
     mrnumber = {3697908},
     zbl = {06770122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/}
}
TY  - JOUR
AU  - Du, Xiaoying
TI  - On the exponential diophantine equation $x^y+y^x=z^z$
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 645
EP  - 653
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/
DO  - 10.21136/CMJ.2017.0645-15
LA  - en
ID  - 10_21136_CMJ_2017_0645_15
ER  - 
%0 Journal Article
%A Du, Xiaoying
%T On the exponential diophantine equation $x^y+y^x=z^z$
%J Czechoslovak Mathematical Journal
%D 2017
%P 645-653
%V 67
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0645-15/
%R 10.21136/CMJ.2017.0645-15
%G en
%F 10_21136_CMJ_2017_0645_15
Du, Xiaoying. On the exponential diophantine equation $x^y+y^x=z^z$. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 645-653. doi: 10.21136/CMJ.2017.0645-15

[1] Bilu, Y., Hanrot, G., Voutier, P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75-122. | DOI | MR | JFM

[2] Birkhoff, G. D., Vandiver, H. S.: On the integral divisors of $a^n-b^n$. Ann. of Math. (2) 5 (1904), 173-180. | DOI | MR | JFM

[3] Buell, D. A.: Computer computation of class groups of quadratic number fields. Congr. Numerantium 22 Conf. Proc. Numerical Mathematics and Computing, Winnipeg 1978 (1979), 3-12 McCarthy et al. | MR | JFM

[4] Bugeaud, Y.: Linear forms in $p$-adic logarithms and the Diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. | DOI | MR | JFM

[5] Deng, Y., Zhang, W.: On the odd prime solutions of the Diophantine equation $x^y+y^x=z^z$. Abstr. Appl. Anal. 2014 (2014), Art. ID 186416, 4 pages. | DOI | MR

[6] Le, M.: Some exponential Diophantine equations. I: The equation $D_1x^2-D_2y^2=\lambda k^z$. J. Number Theory 55 (1995), 209-221. | DOI | MR | JFM

[7] Le, M.: On the Diophantine equation $y^x-x^y=z^2$. Rocky Mt. J. Math. (2007), 37 1181-1185. | DOI | MR | JFM

[8] Liu, Y. N., Guo, X. Y.: A Diophantine equation and its integer solutions. Acta Math. Sin., Chin. Ser. 53 (2010), 853-856. | MR | JFM

[9] Luca, F., Mignotte, M.: On the equation $y^x\pm x^y=z^2$. Rocky Mt. J. Math. 30 (2000), 651-661. | DOI | MR | JFM

[10] Mollin, R. A., Williams, H. C.: Computation of the class number of a real quadratic field. Util. Math. 41 (1992), 259-308. | MR | JFM

[11] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30, Academic Press, London (1969). | MR | JFM

[12] Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C.: Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100000000000. Math. Comput. 70 (2001), 70 1311-1328 corrig. ibid. 72 521-523 2003. | DOI | MR | JFM

[13] Wu, H.: The application of BHV theorem to the Diophantine equation $x^y+y^x=z^z$. Acta Math. Sin., Chin. Ser. 58 (2015), 679-684. | MR | JFM

[14] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y-y^x=c^z$. Colloq. Math. 128 (2012), 277-285. | DOI | MR | JFM

[15] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y+y^x=z^z$. Chin. Ann. Math., Ser. A (2013), 34A 279-284. | MR | JFM

[16] Zhang, Z., Yuan, P.: On the Diophantine equation $ax^y+by^z+cz^x=0$. Int. J. Number Theory 8 (2012), 813-821. | DOI | MR | JFM

Cité par Sources :