Keywords: polynomially bounded operator; invariant subspace
@article{10_21136_CMJ_2017_0459_14,
author = {Liu, Junfeng},
title = {On invariant subspaces for polynomially bounded operators},
journal = {Czechoslovak Mathematical Journal},
pages = {1--9},
year = {2017},
volume = {67},
number = {1},
doi = {10.21136/CMJ.2017.0459-14},
mrnumber = {3632994},
zbl = {06738500},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-14/}
}
TY - JOUR AU - Liu, Junfeng TI - On invariant subspaces for polynomially bounded operators JO - Czechoslovak Mathematical Journal PY - 2017 SP - 1 EP - 9 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0459-14/ DO - 10.21136/CMJ.2017.0459-14 LA - en ID - 10_21136_CMJ_2017_0459_14 ER -
Liu, Junfeng. On invariant subspaces for polynomially bounded operators. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 1, pp. 1-9. doi: 10.21136/CMJ.2017.0459-14
[1] Ambrozie, C., Müller, V.: Invariant subspaces for polynomially bounded operators. J. Funct. Anal. 213 (2004), 321-345. | DOI | MR | JFM
[2] Beauzamy, B.: Introduction to Operator Theory and Invariant Subspaces. North-Holland Mathematical Library 42, North-Holland, Amsterdam (1988). | MR | JFM
[3] Brown, S. W., Chevreau, B., Pearcy, C.: On the structure of contraction operators. II. J. Funct. Anal. 76 (1988), 30-55. | DOI | MR | JFM
[4] Chalendar, I., Partington, J. R.: Modern Approaches to the Invariant-Subspace Problem. Cambridge Tracts in Mathematics 188, Cambridge University Press, Cambridge (2011). | MR | JFM
[5] Jiang, J.: Bounded Operators without Invariant Subspaces on Certain Banach Spaces. Thesis (Ph.D.), The University of Texas at Austin, ProQuest LLC, Ann Arbor (2001). | MR
[6] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory. London Mathematical Society Monographs. New Series 20, Clarendon Press, Oxford (2000). | MR | JFM
[7] Lomonosov, V.: An extension of Burnside's theorem to infinite-dimensional spaces. Isr. J. Math. 75 (1991), 329-339. | DOI | MR | JFM
[8] Pisier, G.: A polynomially bounded operator on Hilbert space which is not similar to a contraction. J. Am. Math. Soc. 10 (1997), 351-369. | DOI | MR | JFM
[9] Rudin, W.: Function Theory in the Unit Ball of $C^n$. Grundlehren der mathematischen Wissenschaften 241, Springer, Berlin (1980). | DOI | MR | JFM
Cité par Sources :