A characterization of reflexive spaces of operators
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 257-266 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that for a linear space of operators ${\mathcal M}\subseteq {\mathcal B}(\scr {H}_1,\scr {H}_2)$ the following assertions are equivalent. (i) ${\mathcal M} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal M})$ of subspaces determined by ${\mathcal M}$ with $P\leq \psi _1(P,Q)$ and $Q\leq \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal M})$, and such that an operator $T\in {\mathcal B}(\scr {H}_1,\scr {H}_2)$ lies in ${\mathcal M}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal M})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
We show that for a linear space of operators ${\mathcal M}\subseteq {\mathcal B}(\scr {H}_1,\scr {H}_2)$ the following assertions are equivalent. (i) ${\mathcal M} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal M})$ of subspaces determined by ${\mathcal M}$ with $P\leq \psi _1(P,Q)$ and $Q\leq \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal M})$, and such that an operator $T\in {\mathcal B}(\scr {H}_1,\scr {H}_2)$ lies in ${\mathcal M}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal M})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
DOI : 10.21136/CMJ.2017.0456-16
Classification : 47A15
Keywords: reflexive space of operators; order-preserving map
@article{10_21136_CMJ_2017_0456_16,
     author = {Bra\v{c}i\v{c}, Janko and Oliveira, Lina},
     title = {A characterization of reflexive spaces of operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {257--266},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2017.0456-16},
     mrnumber = {3783597},
     zbl = {06861579},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0456-16/}
}
TY  - JOUR
AU  - Bračič, Janko
AU  - Oliveira, Lina
TI  - A characterization of reflexive spaces of operators
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 257
EP  - 266
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0456-16/
DO  - 10.21136/CMJ.2017.0456-16
LA  - en
ID  - 10_21136_CMJ_2017_0456_16
ER  - 
%0 Journal Article
%A Bračič, Janko
%A Oliveira, Lina
%T A characterization of reflexive spaces of operators
%J Czechoslovak Mathematical Journal
%D 2018
%P 257-266
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0456-16/
%R 10.21136/CMJ.2017.0456-16
%G en
%F 10_21136_CMJ_2017_0456_16
Bračič, Janko; Oliveira, Lina. A characterization of reflexive spaces of operators. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 257-266. doi: 10.21136/CMJ.2017.0456-16

[1] Han, D. G.: On $\scr A$-submodules for reflexive operator algebras. Proc. Am. Math. Soc. 104 (1988), 1067-1070. | DOI | MR | JFM

[2] Erdos, J. A.: Reflexivity for subspace maps and linear spaces of operators. Proc. Lond. Math. Soc., III Ser. 52 (1986), 582-600. | DOI | MR | JFM

[3] Erdos, J. A., Power, S. C.: Weakly closed ideals of nest algebras. J. Oper. Theory 7 (1982), 219-235. | MR | JFM

[4] Hadwin, D.: A general view of reflexivity. Trans. Am. Math. Soc. 344 (1994), 325-360. | DOI | MR | JFM

[5] Halmos, P. R.: Reflexive lattices of subspaces. J. Lond. Math. Soc., II. Ser. 4 (1971), 257-263. | DOI | MR | JFM

[6] Kliś-Garlicka, K.: Reflexivity of bilattices. Czech. Math. J. 63 (2013), 995-1000. | DOI | MR | JFM

[7] Kliś-Garlicka, K.: Hyperreflexivity of bilattices. Czech. Math. J. 66 (2016), 119-125. | DOI | MR | JFM

[8] Li, P., Li, F.: Jordan modules and Jordan ideals of reflexive algebras. Integral Equations Oper. Theory 74 (2012), 123-136. | DOI | MR | JFM

[9] Loginov, A. I., Sul'man, V. S.: Hereditary and intermediate reflexivity of $W\sp*$-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260-1273 Russian. | MR | JFM

[10] Shulman, V., Turowska, L.: Operator synthesis I. Synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209 (2004), 293-331. | DOI | MR | JFM

Cité par Sources :