A characterization of reflexive spaces of operators
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 257-266
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that for a linear space of operators ${\mathcal M}\subseteq {\mathcal B}(\scr {H}_1,\scr {H}_2)$ the following assertions are equivalent. (i) ${\mathcal M} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal M})$ of subspaces determined by ${\mathcal M}$ with $P\leq \psi _1(P,Q)$ and $Q\leq \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal M})$, and such that an operator $T\in {\mathcal B}(\scr {H}_1,\scr {H}_2)$ lies in ${\mathcal M}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal M})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
We show that for a linear space of operators ${\mathcal M}\subseteq {\mathcal B}(\scr {H}_1,\scr {H}_2)$ the following assertions are equivalent. (i) ${\mathcal M} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal M})$ of subspaces determined by ${\mathcal M}$ with $P\leq \psi _1(P,Q)$ and $Q\leq \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal M})$, and such that an operator $T\in {\mathcal B}(\scr {H}_1,\scr {H}_2)$ lies in ${\mathcal M}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal M})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
DOI :
10.21136/CMJ.2017.0456-16
Classification :
47A15
Keywords: reflexive space of operators; order-preserving map
Keywords: reflexive space of operators; order-preserving map
@article{10_21136_CMJ_2017_0456_16,
author = {Bra\v{c}i\v{c}, Janko and Oliveira, Lina},
title = {A characterization of reflexive spaces of operators},
journal = {Czechoslovak Mathematical Journal},
pages = {257--266},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2017.0456-16},
mrnumber = {3783597},
zbl = {06861579},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0456-16/}
}
TY - JOUR AU - Bračič, Janko AU - Oliveira, Lina TI - A characterization of reflexive spaces of operators JO - Czechoslovak Mathematical Journal PY - 2018 SP - 257 EP - 266 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0456-16/ DO - 10.21136/CMJ.2017.0456-16 LA - en ID - 10_21136_CMJ_2017_0456_16 ER -
%0 Journal Article %A Bračič, Janko %A Oliveira, Lina %T A characterization of reflexive spaces of operators %J Czechoslovak Mathematical Journal %D 2018 %P 257-266 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0456-16/ %R 10.21136/CMJ.2017.0456-16 %G en %F 10_21136_CMJ_2017_0456_16
Bračič, Janko; Oliveira, Lina. A characterization of reflexive spaces of operators. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 257-266. doi: 10.21136/CMJ.2017.0456-16
Cité par Sources :