On the derived length of units in group algebra
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 855-865.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a finite group $G$, $K$ a field of characteristic $p\geq 17$ and let $U$ be the group of units in $KG$. We show that if the derived length of $U$ does not exceed $4$, then $G$ must be abelian.
DOI : 10.21136/CMJ.2017.0205-16
Classification : 16S34, 16U60
Keywords: group algebra; group of units; derived subgroup
@article{10_21136_CMJ_2017_0205_16,
     author = {Chaudhuri, Dishari and Saikia, Anupam},
     title = {On the derived length of units in group algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {855--865},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2017},
     doi = {10.21136/CMJ.2017.0205-16},
     mrnumber = {3697922},
     zbl = {06770136},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0205-16/}
}
TY  - JOUR
AU  - Chaudhuri, Dishari
AU  - Saikia, Anupam
TI  - On the derived length of units in group algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 855
EP  - 865
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0205-16/
DO  - 10.21136/CMJ.2017.0205-16
LA  - en
ID  - 10_21136_CMJ_2017_0205_16
ER  - 
%0 Journal Article
%A Chaudhuri, Dishari
%A Saikia, Anupam
%T On the derived length of units in group algebra
%J Czechoslovak Mathematical Journal
%D 2017
%P 855-865
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0205-16/
%R 10.21136/CMJ.2017.0205-16
%G en
%F 10_21136_CMJ_2017_0205_16
Chaudhuri, Dishari; Saikia, Anupam. On the derived length of units in group algebra. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 3, pp. 855-865. doi : 10.21136/CMJ.2017.0205-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0205-16/

Cité par Sources :